# Kinetics of particles ## Newton's second law of motion $$F = ma$$ * if $F = 0$ then $a = 0$ if $v_i = 0$ : particle is remain at rest. if $v_i \not= 0$ : particle move with the constant speed in a straight line (Newton's $1^{\text{st}}$ law). $$\sum F_x = ma_x = m\ddot x$$ $$\sum F_y = ma_y = m\ddot y$$ $$\sum F_z = ma_z = m\ddot z$$ $$\sum F_r = ma_r = m(\ddot r-r\dot\theta^2)$$ $$\sum F_\theta = ma_\theta = m(r\ddot\theta+2\dot r\dot\theta)$$ ## Momentum of particles $$p = mv$$ $$F = \dot p = \frac{d(mv)}{dt}$$ if $m \not= \text{constant}$, $F = ma+\dot mv$ * **conservation of momentum** $$p_{xi} = p_{xf} \qquad p_{yi} = p_{yf} \qquad p_{zi} = p_{zf}$$ $$p_x = mv_{xi} = mv_{xf}$$ $$p_y = mv_{yi} = mv_{yf}$$ $$p_z = mv_{zi} = mv_{zf}$$ * **Coefficient of restitution** :::success $$e = \frac{v_b-v_a}{v_b'-v_a'}$$ ::: * **Elastic Collision** $$v_a+v_a' = v_b+v_b'$$ $$e = 1$$ ## Augular momentum of particles <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/rkhGfozExg.png) </div> $$L = I\omega$$ $$L = mr^2\omega = mr^2\dot\theta$$ $$L = \vec rm\vec v$$ $$\dot L = \dot r\times mv+r\times m\dot v$$ $$= v\times mv+r\times ma$$ $$= r\times\sum F = \sum M$$ * **conservation of augular momentum** $$L_{xi} = L_{xf} \qquad L_{yi} = L_{yf} \qquad L_{zi} = L_{zf}$$ $$L_x = m\omega_{xi} = m\omega_{xf}$$ $$L_y = m\omega_{yi} = m\omega_{yf}$$ $$L_z = m\omega_{zi} = m\omega_{zf}$$ * **motion under a central force** $\dot L = 0$ then $L$ is a constant. $$L = r\times mv = mr^2\dot\theta = \text{constant}$$ * $m$ is a constant, $r$ and $v$ must $\perp L$. <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/SyTL-oMEgx.png) </div> $$dA = \frac12r^2\ \theta$$ :::success $$\frac{dA}{dt} = \frac12r^2\dot\theta = \text{constant}$$ ::: ## Newton's law of gravitation $$F_g = G\frac{Mm}{r^2}$$ * $G \simeq 6.673\times10^{-11}$ $$W = mg = \frac{GMm}{r^2}$$ $$GM = gr^2$$ $$g = \frac{GM}{r^2}$$ * $R_e \simeq 6.37\times10^6 \qquad g \simeq 9.81$ ## Trajectory of a particle under a central force <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/HyKFfifVgg.png) </div> $$\sum F = ma$$ $$m(\ddot r-r\dot\theta^2) = -F$$ $$m(r\ddot\theta+2\dot r\dot\theta) = 0$$ * Angular momentum per unit mass : $l$ $$L/m = \frac{I\omega}{m} = l$$ $$l = r^2\dot\theta = \text{constant}$$ $$\dot\theta = l/r^2$$ **velocity** $$\dot r = \frac{dr}{dt} = \frac{dr}{d\theta}\dot\theta = \frac{l}{r^2}\frac{dr}{d\theta} = -l\frac{d}{d\theta}(\frac1r)$$ * Radial velocity : $\dot r$ $$\dot r = \frac{dr}{dt} = \frac{dr}{d\theta}\dot\theta = \frac{l}{r^2}\frac{dr}{d\theta}$$ $$l = r^2\omega$$ :::success $$\vec v_r = \omega\frac{dr}{d\theta} = \frac{d}{d\theta}(\frac{-l}r)$$ ::: **acceleration** :::success $$\ddot r = \frac{d\dot r}{dt} = \frac{d\dot r}{d\theta}\dot\theta = \frac{l}{r^2}\frac{d}{d\theta}(-l\frac{d}{d\theta}(\frac1r)) = -\frac{l^2}{r^2}\frac{d^2}{d\theta^2}(\frac1r)$$ ::: * Radial acceleration : $\ddot r$ * let $u = 1/r$ $$\ddot r = -l^2u^2\frac{d^2u}{d\theta^2}$$ $$\frac{l}{r} = r\omega = v_t$$ $$\vec a_r = \frac{v_t^2}{r}\frac{d^2}{d\theta^2}$$ *** $$\ddot r = r\dot\theta^2-\frac Fm = \frac1ul^2u^4-\frac Fm = -l^2u^2\frac{d^2u}{d\theta^2}$$ $$\frac{d^2u}{d\theta^2}+u = \frac{F}{ml^2u^2}$$ :::success $$\frac{d^2u}{d\theta^2}+u = u$$ ::: ## Space mechanics $$F = GMm/r^2 = GMmu^2$$ * mass of the earth : $M$ * mass of the things on earth : $m$ * the radius of the Earth : $r$ $$\frac{d^2u}{d\theta^2}+u = \frac{GM}{l^2} = \text{constant}$$ $$u = \frac1r = \frac{GM}{l^2}+Ccos(\theta)$$ * constant : $C$ :::success $$\varepsilon = \frac{C}{GM/l^2} = \frac{Cl^2}{GM}$$ ::: eccentricity : $\varepsilon$ $$\frac1r = \frac{GM}{l^2}(1+\varepsilon cos(\theta))$$ the equation represents 4 possible trajectories 1. $\varepsilon = 0$ The circular trajectory appears $r = \frac{l^2}{GM} = \text{constant}$ 2. $0 < \varepsilon < 1$ The elliptical trajectory appears 3. $\varepsilon = 1$ The parabolic trajectory appears 4. $1 < \varepsilon$ The hyperbolic trajectory appears <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/rJMaWiGNxg.png) </div> $$l = rv = r^2\dot\theta$$ $$W = mg = GMm/r^2$$ when $\theta = 0$ and $\varepsilon = 1$ $$\frac1r = \frac{GM}{l^2}(1+1)$$ $$l^2 = 2GMr$$ $$l = vr$$ $$v^2r^2 = 2GMr$$ $$v_{esc} = (2GM/r)^{1/2} = (2gR^2/r)^{1/2}$$ if $R = r$ :::success $$v_{esc} = (2gR)^{1/2}$$ ::: 1. if $v > v_{esc}$ , $\varepsilon > 1$ : hyperbolic  2. if $v = v_{esc}$ , $\varepsilon > 1$ : parabola 3. if $v < v_{esc}$ , $\varepsilon > 1$ : ellipse ## Elliptical trajectory $$dA/dt = l/2$$ $$dA = l/2\ dt$$ $$\pi ab = A = \int dA = l/2\int\ dt = l\Delta t/2$$ $$\Delta = 2\pi ab/l$$ $$r_{max}+r_{min} = 2a$$ $$a = (r_{max}+r_{min})/2$$ $$b^2 = a^2-(a-r_{min})^2$$ $$= 2ar_{min}-r_{min}^2 = r_{min}(2a-r_{min}) = r_{min}r_{max}$$ $$\Delta t = \frac{2\pi(r_{min}+r_{max})(r_{min}r_{max})^{1/2}}{2l}$$ :::success $$\Delta t = \frac{\pi(r_{min}+r_{max})(r_{min}r_{max})^{1/2}}{l}$$ :::