# Mathematical formula ## Trigonometric function $$sin^2\theta+cos^2\theta = 1$$ $$sec^2\theta = 1+tan^2\theta$$ $$csc^2\theta = 1+cot^2\theta$$ $$sin^2\frac{\theta}{2} = \frac{1}{2}(1-cos\theta)$$ $$sin2\theta = 2sin\theta cos\theta$$ $$cos^2\frac{\theta}{2} = \frac{1}{2}(1+cos\theta)$$ $$cos2\theta = cos^2\theta-sin^2\theta$$ $$1-cos\theta = 2sin^2\frac{\theta}{2}$$ $$tan2\theta = \frac{2tan\theta}{1-tan^2\theta}$$ $$tan\frac{\theta}{2} = \sqrt{\frac{1-cos\theta}{1+\theta}}$$ $$sin(A\pm B) = sinAcosB\pm cosAsinB$$ $$cos(A\pm B) = cosAcosB\mp sinAsinB$$ $$sinA\pm sinB = 2sin(\frac{1}{2}(A\pm B))cos(\frac{1}{2}(A\mp B))$$ $$cosA+cosB = 2cos(\frac{1}{2}(A+B))cos(\frac{1}{2}(A-B))$$ $$cosA-cosB = 2cos(\frac{1}{2}(A+B))sin(\frac{1}{2}(B-A))$$ ## Expansion $$(a+b)^n = a^n+\frac{n}{1!}a^{n-1}b+\frac{n}{2!(n-2)!}a^{n-2}b^2+...$$ $$(1+x)^n = 1+nx+\frac{n}{2!(n-2)!}x^2+...$$ $$e^x = 1+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+...$$ $$ln(1\pm x) = \pm x-\frac{1}{2}x^2\pm\frac{1}{3}x^3-...$$ $$sinx = x-\frac{x^3}{3!}+\frac{x^5}{5!}-...$$ $$cosx = 1-\frac{x^2}{2!}+\frac{x^4}{4!}-...$$ $$tanx = x+\frac{x^3}{3}+\frac{2x^5}{15}+... , \mid x\mid<\frac{\pi}{2}$$ ## Differential $$\frac{d}{dx}a = 0$$ $$\frac{d}{dx}ax^n = nax^{n-1}$$ $$\frac{d}{dx}e^{ax} = ae^{ax}$$ $$\frac{d}{dx}sin(ax) = a\cdot cos(ax)$$ $$\frac{d}{dx}cos(ax) = -a\cdot sin(ax)$$ $$\frac{d}{dx}tan(ax) = a\cdot sec^2(ax)$$ $$\frac{d}{dx}cot(ax) = a\cdot -acsc^2(ax)$$ $$\frac{d}{dx}secx = tanx\cdot secx$$ $$\frac{d}{dx}cscx = -cotx\cdot cscx$$ $$\frac{d}{dx}ln(ax) = \frac{a}{x}$$ ## Integration $$\int x^ndx = \frac{x^{n+1}}{n+1}$$ $$\int\frac{dx}{x} = lnx$$ $$\int\frac{dx}{a+bx} = \frac{1}{b}ln(a+bx)$$ $$\int\frac{dx}{(a+bx)^2} = \frac{-1}{(a+bx)}$$ $$\int\frac{dx}{a^2+x^2} = \frac{1}{a}tan ^{-1}\frac{x}{a}$$ $$\int\frac{dx}{a^2-x^2} = \frac{1}{2a}ln\frac{a+x}{a-x}$$ $$\int\frac{dx}{x^2\pm a^2} = \pm\frac{1}{2}ln(a^2\pm x^2)$$ $$\int\frac{dx}{\sqrt{a^2-x^2}} = sin^{-1}\frac{x}{a} = -cos^{-1}\frac{x}{a}$$ $$\int\frac{xdx}{\sqrt{x^2\pm a^2}} = \sqrt{x^2+a^2}$$ $$\int\sqrt{a^2-x^2}dx = \frac{1}{2}(x\sqrt{a^2-x^2}+a^2sin^{-1}\frac{x}{a})$$ $$\int x\sqrt{a^2-x^2}dx =\frac{1}{3}(a^2-x^2)^{\frac{3}{2}}$$ $$\int e^{ax}dx = \frac{1}{a}e^{ax}$$ $$\int ln(ax)dx = (xln(ax))-x$$ $$\int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$ $$\int\frac{dx}{a+be^{cx}} = \frac{x}{a}-\frac{1}{ac}ln(a+be^{cx})$$ $$\int sin(x)dx = \frac{1}{a}cos(ax)$$ $$\int cos(ax)dx = -\frac{1}{a}sin(ax)$$ $$\int tan(ax)dx = -\frac{1}{a}ln(cos(ax)) = \frac{1}{a}ln(sec(ax))$$ $$\int cot(ax)dx = \frac{1}{a}ln(sin(ax))$$ $$\int sec(ax)dx = \frac{1}{a}ln(sec(ax)+tan(ax))$$ $$\int csc(ax)dx = \frac{1}{a}ln(csc(ax)-cot(ax)) = \frac{1}{a}ln(tan(\frac{ax}{2}))$$ $$\int sin^2(ax)dx = \frac{x}{2}-\frac{sin(2ax)}{4a}$$ $$\int cos^2(ax)dx = \frac{x}{2}+\frac{sin(2ax)}{4a}$$ $$\int \frac{dx}{sin^2 (ax)} = \frac{-1}{a}cot(ax)$$ $$\int \frac{dx}{cos^2 (ax)} = \frac{1}{a}tan(ax)$$ $$\int tan^2(ax)dx = \frac{1}{a}tan(ax)-x$$ $$\int cot^2(ax)dx = -\frac{1}{a}cot(ax)-x$$ $$\int sin^{-1}(ax)dx = x(sin^{-1}(ax))+\frac{\sqrt{1-a^2x^2}}{a}$$ $$\int cos{-1}(ax)dx = x(cos^{-1}(ax))-\frac{\sqrt{1-a^2x^2}}{a}$$ $$\int \frac{dx}{(x^2+a)^{\frac{3}{2}}} = \frac{x}{a^2\sqrt{x^2+a^2}}$$ $$\int \frac{dx}{(x^2+a^2)^{\frac{3}{2}}} = \frac{1}{a^2\sqrt{x^2+a^2}}$$ ## x<<1 extreme approximation $$(1+x)^n \simeq 1+nx$$ $$e^x \simeq 1+x$$ $$ln(1\pm x) \simeq \pm x$$ $$sin(x) \simeq x$$ $$cos(x) \simeq 1$$ $$tan(x) \simeq x$$ ## Factorial $$0! = 1$$ $$n! = 1\times2\times3...\times n$$ $$n! = n(n-1)!$$ $$n! = \prod_{i = 1}^n i \quad \forall n\ge1$$ $$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt = (n-1)!$$ $$\Gamma(\frac12) = \sqrt{\pi} = -0.5!$$ $$\Gamma(n+1) =n\Gamma(n)$$ ## Other $$e^{i\theta} = \cos(\theta)+i\sin(\theta)$$