# Kinetic energy and momentum methods ## Kinetic energy $$K = K_v+K_\omega$$ $$K = \frac12mv^2+\frac12I\omega^2$$ $$K = \frac12(mv^2+I\omega^2)$$ $$I = mr^2$$ :::success $$K = \frac12m(v^2+(r\omega)^2)$$ ::: ## Center of Gravity $$\bar x = \frac{\sum Wx}{\sum W}$$ $$\bar x = \frac{\sum mgx}{\sum mg} = \frac{\sum mx}{\sum m}$$ $$\bar y = \frac{\sum my}{\sum m}$$ $$\bar z = \frac{\sum mz}{\sum m}$$ ## Moment of Inertia $$I = mr^2$$ $$F = ma$$ $$a = \alpha r$$ $$\tau = Fr = (ma)r = m\alpha r\cdot r$$ :::success $$\tau = I\alpha = mr^2\alpha$$ ::: * sphere : $I = \frac25mr^2$ * cylinder : $\frac12mr^2$ * hoop : $mr^2$ ## Momentum and Impulse * Momentum : $P$ $$P = mv$$ * Impulse : $J$ $$J = \frac{dp}{dt} = ma$$ $$J = \sum F$$ * momentum conservation $$P_i = P_f$$ ## 1D Collision | collision | Elastic collision | inelastic collision | Completely inelastic collision | |:------------:|:-----------------:|:-------------------:|:------------------------------:| | conservation | momentum & energy | momentum | momentum | ### 1D Elastic collision $$P_{1i}+P_{2i} = P_{1f}+P_{2f}$$ $$m_1v_{1i}+m_2v_{2i} = m_1v_{1f}+m_2v_{2f}$$ $$K_{1i}+K_{2i} = K_{1f}+K_{2f}$$ $$\frac{1}{2}m_1v_{1i}^2+\frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2+\frac{1}{2}m_2v_{2f}^2$$ $$m_1v_{1i}^2+m_2v_{2i}^2 = m_1v_{1f}^2+m_2v_{2f}^2$$ $$m_1(v_{1i}^2-v_{1f}^2) = m_2(v_{2f}^2-v_{2i}^2)$$ $$m_1(v_{1i}-v_{1f})(v_{1i}+v_{1f}) = m_2(v_{2i}-v_{2f})(v_{2i}+v_{2f})$$ :::success * $m_1v_{1i}+m_2v_{2i} = m_1v_{1f}+m_2v_{2f}$ * $v_{1i}+v_{1f} = v_{2i}+v_{2f}$ $$v_{1f} = \frac{v_{1i}(m_1-m_2)+2m_2v_{2i}}{m_1+m_2}$$ $$v_{2f} = \frac{v_{2i}(m_1-m_2)+2m_2v_{1i}}{m_1+m_2}$$ ::: ### 1D Completely inelastic collision $$m_1v_{1i}+m_2v_{2i} = (m_1+m_2)v_{f}$$ ### 1D inelastic collision $$K_i\not= K_f$$ :::success $$m_1v_{1i}+m_2v_{2i} = m_1v_{1f}+m_2v_{2f}$$ $$e(v_{1i}-v_{2i}) = (v_{2f}-v_{1f})$$ ::: * Coefficient of restitution : $e$ $$e = \frac{v_{Separation}}{v_{collision}}$$ $$e = \frac{v_{2f}-v_{1f}}{v_{1i}-v_{2i}}$$ $$e(v_{1i}-v_{2i}) = (v_{2f}-v_{1f})$$ $$e = \sqrt{\frac{E_{sys\ f}}{E_{sys\ i}}}$$ [why?](https://hackmd.io/2hz1NLTtQwSdnrbFQj2iBA?both) ## 2D Collision ### 2D Elastic collision **step 1** Convert coordinate system (x,y)>>(n,t) * Speed direction : $\theta$ * Collision Geometry : $\phi$ $$v_{ni} = v_i\cos(\theta-\phi)$$ $$v_{ti} = v_i\sin(\theta-\phi)$$ :::success $$P_{ni} = P_{nf}$$ $$P_{ti} = P_{tf}$$ $$K_i = K_f$$ ::: **step 2** The t direction is perpendicular to the collision direction, there is no collision effect, and the movement remains the same。 :::success $$v_{1ti} = v_{1tf}$$ $$v_{2ti} = v_{2tf}$$ ::: so we can find that $$\frac{1}{2}m_1v_{1ti}^2+\frac{1}{2}m_2v_{2ti}^2 = \frac{1}{2}m_1v_{1tf}^2+\frac{1}{2}m_2v_{2tf}^2$$ $$K_{ti} = K_{tf}$$ **step 3** Collision in this direction $$K_i = K_f$$ $$K_{ni}+K_{ti} = K_{nf}+K_{tf}$$ $$K_{ni} = K_{nf}$$ $$\frac{1}{2}m_1v_{1ni}^2+\frac{1}{2}m_2v_{2ni}^2 = \frac{1}{2}m_1v_{1nf}^2+\frac{1}{2}m_2v_{2nf}^2$$ $$m_1v_{1ni}+m_2v_{2ni} = m_1v_{1nf}+m_2v_{2nf}$$ :::success $$v_{1ni}+v_{1nf} = v_{2ni}+v_{2nf}$$ $$v_{1nf} = \frac{v_{1ni}(m_1-m_2)+2m_2v_{2ni}}{m_1+m_2}$$ $$v_{2f} = \frac{v_{2ni}(m_1-m_2)+2m_2v_{1ni}}{m_1+m_2}$$ ::: **step 4** :::success $$v_{1f} = v_{1tf}\cdot\vec t+v_{1nf}\cdot\vec n$$ $$v_{2f} = v_{2tf}\cdot\vec t+v_{2nf}\cdot\vec n$$ ::: ### 2D inelastic collision **step 1** * Speed direction : $\theta$ * Collision Geometry : $\phi$ $$v_{ni} = v_i\cos(\theta-\phi)$$ $$v_{ti} = v_i\sin(\theta-\phi)$$ **step 2** Conditions 1. $v_{1ti} = v_{1tf}$ 1. $v_{2ti} = v_{2tf}$ 1. $e(v_{1ni}-v_{2ni}) = v_{2nf}-v_{1nf}$ 1. $P_{ni} = P_{nf}$ **step 3** Solve for n directions $$e(v_{1ni}-v_{2ni}) = v_{2nf}-v_{1nf}$$ $$ev_{1ni}-ev_{2ni} = v_{2nf}-v_{1nf}$$ $$v_{1nf} = (v_{2nf})+ev_{2ni}-ev_{1ni}$$ **** $$m_1v_{1ni}+m_2v_{2ni} = m_1v_{1nf}+m_2v_{2nf}$$ $$v_{2nf} = \frac{m_1v_{1ni}+m_2v_{2ni}-m_1v_{1nf}}{m_2}$$ $$v_{2nf} = \frac{m_1v_{1ni}+m_2v_{2ni}-m_1v_{1nf}}{m_2}$$ **** $$v_{1nf} = (\frac{m_1v_{1ni}+m_2v_{2ni}-m_1v_{1nf}}{m_2})+ev_{2ni}-ev_{1ni}$$ $$v_{1nf}+\frac{m_1v_{1nf}}{m_2} = (\frac{m_1v_{1ni}+m_2v_{2ni}}{m_2})+ev_{2ni}-ev_{1ni}$$ $$v_{1nf}(1+\frac{m_1}{m_2}) = \frac{m_1v_{1ni}+m_2v_{2ni}+m_2ev_{2ni}-m_2ev_{1ni}}{m_2}$$ $$v_{1nf} = \frac{m_1v_{1ni}+m_2v_{2ni}+m_2ev_{2ni}-m_2ev_{1ni}}{m_2+m_1}$$ :::success $$v_{1nf} = \frac{v_{1ni}(m_1-m_2e)+m_2v_{2ni}(1+e)}{m_2+m_1}$$ ::: **** $$v_{2nf} = \frac{m_1v_{1ni} + m_2v_{2ni} - m_1v_{1nf}}{m_2}$$ $$v_{2nf} = \frac{m_1v_{1ni} + m_2v_{2ni} - m_1 \left( \frac{v_{1ni}(m_1 - m_2e) + m_2v_{2ni}(1 + e)}{m_1 + m_2} \right)}{m_2}$$ $$v_{2nf} = \frac{(m_1v_{1ni} + m_2v_{2ni})(m_1 + m_2) - m_1[v_{1ni}(m_1 - m_2e) + m_2v_{2ni}(1 + e)]}{m_2(m_1 + m_2)}$$ $$= m_1v_{1ni}(m_1 + m_2) + m_2v_{2ni}(m_1 + m_2) - m_1v_{1ni}(m_1 - m_2e) - m_1m_2v_{2ni}(1 + e)$$ $$m_1v_{1ni}(m_1 + m_2) - m_1v_{1ni}(m_1 - m_2e) = m_1v_{1ni}[m_1 + m_2 - (m_1 - m_2e)] = m_1v_{1ni}(m_2 + m_2e) = m_1v_{1ni}m_2(1 + e)$$ $$m_2v_{2ni}(m_1 + m_2) - m_1m_2v_{2ni}(1 + e) = m_2v_{2ni}[m_1 + m_2 - m_1(1 + e)] = m_2v_{2ni}[m_2 - m_1e] $$ $$v_{2nf} = \frac{m_1v_{1ni}m_2(1 + e) + m_2v_{2ni}(m_2 - m_1e)}{m_2(m_1 + m_2)}$$ :::success $$v_{2nf} = \frac{ v_{2ni}(m_2 - m_1e)+v_{1ni}m_1(1 + e)}{m_1 + m_2}$$ ::: **step 4** :::success $$v_{1f} = v_{1tf}\cdot\vec t+v_{1nf}\cdot\vec n$$ $$v_{2f} = v_{2tf}\cdot\vec t+v_{2nf}\cdot\vec n$$ :::