# Force & motion ## Newton's laws of motion 1. if $F = 0$ , then $v_i = v_f$ 2. $F = ma$ 3. $F_{ab} = -F_{ba}$ ## Pulley <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/S1AE7qMExx.png" alt="image"width="400"> </div> **Fixed pulley** $$T = w$$ $$F_{fix} = 2T$$ **Movable pulley** $$T = \frac w2$$ $$F_{fix}= T$$ ## Circular motion **Horizontal** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Byy8XqMVex.png" alt="image"width="400"> </div> $$F = ma = m\frac{v^2}{r}$$ **Vertical** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Ska8mcM4lg.png" alt="image"width="200"> </div> $$T_{top} = F+w = ma+mg$$ $$T_{top} = m(\frac{v^2}{r}+g)$$ $$v_{top} = \sqrt{gr}$$ $$T_{mid} = F = ma$$ $$T_{mid} = \frac{mv^2}{r}$$ $$v_{mid} = \sqrt{3gr}$$ $$T_{bottom} = F-w = ma-mg$$ $$T_{bottom} = m(\frac{v^2}{r}-g)$$ $$v_{bottom} = \sqrt{5gr}$$ ## Spring <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkluQ5zExg.png" alt="image"width="200"> </div> $$F = k\Delta x$$ $$mg = k\Delta x$$ $$x = \frac{mg}{k}$$ * consider Spring height : $x_i$ $$x = x_i+\frac{mg}{k}$$ * consider spring mass : $m_s$ [**why ??**](https://hackmd.io/bkcNhrbuRreR-OI7OkTOJQ) $$x = x_i+\frac{mg}{k}+\frac{m_sg}{2k}$$ ## Vehicle turning <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/BJztQ5fNle.png" alt="image"width="300"> </div> $$F = f$$ $$w = N$$ $$\mu N = ma$$ $$\mu mg = m\frac{v^2}{r}$$ $$v = \sqrt{\mu gr}$$ ## Superelevation <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SJV9m5GExl.png" alt="image"width="400"> </div> $$\frac{F}{sin(\theta)} = \frac{w}{sin(90^o-\theta)}$$ $$\frac{ma}{sin(\theta)} = \frac{mg}{sin(90^o-\theta)}$$ * when $\theta >> 1$ , then $cos(\theta) \simeq 1$ $$a = gsin(\theta)$$ $$\frac{v^2}{r} = g\frac{h}{d}$$ * height : $h$ * Track : $d$ $$h = \frac{dv^2}{gr}$$