# Center of Mass & Momentum ## Center of mass $$r_{com} =\sum\frac{m_ir_i}{m_i} $$ $$ = \frac{(m_1r_1+m_2r_2+...m_nr_n)}{(m_1+m_2+...m_n)}$$ $$ = \frac{(m_1r_1+m_2r_2+...m_nr_n)}{M}$$ $$\vec{r_i} = x_i\vec{i}+y_i\vec{j}+z_i\vec{k}$$ $$x_{com} = \sum\frac{m_ix_i}{m_i} $$ $$y_{com} = \sum\frac{m_iy_i}{m_i} $$ $$z_{com} = \sum\frac{m_iz_i}{m_i} $$ :::success $$XYZ_{moc}(x,y,z) = \frac{1}{M}\sum{(m_ix_i,m_iy_i,m_iz_i)}$$ ::: ## Density $$D = \frac{m}{V}$$ ## Momentum and Impulse $$\vec{F_{net}} = m\vec{a_{com}}$$ * Momentum $$\vec{p} = m\vec{v}$$ $$\vec{F} = \frac{d\vec{p}}{dt} = \frac{md\vec{v}}{dt} = m\vec{a}$$ * Impulse $$\vec{J} = P_i-P_f$$ $$J = \int_{t_i}^{t_f}Fdt = F{\Delta t}$$ * momentum conservation $p_{com}$ is a constant $p_{comi} = p_{comf}$ ## Collision $$p_1i+p_2i = p_1f+p_2f$$ * Inelastic collision $$m_1v_{1i}+m_2v_{2i} = m_1v_{1f}+m_2v_{2f}$$ $v_{1f}=v_{2f}$$ if$v_{2i} = 0$ $$m_1v_i = (m_1+m_2)v_f$$ $$v_f = \frac{m_1v_i}{m_1+m_2}$$ $$\vec{p_{com}} = Mv_{comi} = Mv_{comf}$$ $$\vec{p_{com}} = \vec{p_{1i}}+\vec{p_{2i}}$$ $$v_{comf} = \frac{\vec{p_{com}}}{M} = \frac{\vec{p_{com}}}{m_1+m_2}$$ * Elastic collision if $m_1 = m_2$ and $m_{2i} = 0$ , then $v_{1i} = v_{2f}$ and $v_{1f} = 0$ if $m_1 >> m_2$ and $m_{2i} = 0$ , then $v_{1f} \simeq v_{2f} \simeq v_{1i}$ if $m_1 << m_2$ and $m_{2i} = 0$ , then $v_{1f} \simeq -v_{1i}$ and $v_{2f} \simeq 0$ $$K_{1i}+K_{2i} = K_{1f}+K_{2f}$$ $$m_1v_{1i}+m_2v_{2i} = m_1v_{1f}+m_2v_{2f}$$ $$m_1(v_{1i}-v_{1f}) = m_2(v_{2f}-v_{2i})\quad-(1)$$ $$v_{1f} = \frac{m_1v_{1i}+m_2(v_{2i}-v_{2f})}{m_1}\quad-(2)$$ $$v_{2f} = \frac{m_2v_{2i}+m_1(v_{1i}-v_{1f})}{m_2}\quad-(3)$$ $$\frac{1}{2}m_1v_{1i}^2+\frac{1}{2}m_2v_{2i}^2 = \frac{1}{2}m_1v_{1f}^2+\frac{1}{2}m_2v_{2f}^2$$ $$m_1v_{1i}^2+m_2v_{2i}^2 = m_1v_{1f}^2+m_2v_{2f}^2$$ $$m_1(v_{1i}^2-v_{1f}^2) = m_2(v_{2f}^2-v_{2i}^2)$$ $$(1)\Longrightarrow m_1(v_{1i}-v_{1f})(v_{1i}+v_{1f}) = m_2(v_{2i}-v_{2f})(v_{2i}+v_{2f})$$ :::success $$v_{1i}+v_{1f} = v_{2i}+v_{2f}\quad-(4)$$ linear equation in two variables $$(4)\Longrightarrow(2),(3)$$ ::: ## 2D collisionc (Elastic) <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/S16OoxgNxl.png" alt="image"width="400"> </div> $$p_{1i}+p_{2i} = p_{1f}+p_{2f}$$ $$K_{1i}+K_{2i} = K_{1f}+K_{2f}$$ $$v_x^2+v_y^2 = v^2$$ * X direction $$p_{xi} = p_{xf}$$ $$p_{1xi}+p_{2xi} = p_{1xf}+p_{2xf}$$ $$m_1v_{1xi}+m_2v_{2xi} = m_1v_{1xf}+m_2v_{2xf}$$ :::success $$m_1(v_{1xi}-v_{1xf}) = m_2(v_{2xi}-v_{2xf})$$ ::: * Y direction $$p_{yi} = p_{yf}$$ $$p_{1yi}+p_{2yi} = p_{1yf}+p_{2yf}$$ $$m_1v_{1yi}+m_2v_{2yi} = m_1v_{1yf}+m_2v_{2yf}$$ :::success $$m_1(v_{1yi}-v_{1yf}) = m_2(v_{2yi}-v_{2yf})$$ ::: * if $v_2i = 0$ , $m_1 = m_2$ and $v_{1yi} = 0$ $$v_{1yf} = -v_{2yf}\quad-(1)$$ $$v_{1xi}-v_{1xf} = -v_{2xf}\quad-(2)$$ $$\frac{1}{2}m_1v_{1i}^2 = \frac{1}{2}m_1v_{1f}^2+\frac{1}{2}m_2v_{2f}^2$$ $$m_1v_{1i}^2 = m_1v_{1f}^2+m_2v_{2f}^2$$ $$v_{1xi}^2-v_{1f}^2 = v_{2f}^2\quad-(3)$$ $$(1),(2)\Longrightarrow(3)$$ $$v_{1xi}^2-v_{1yf}^2-v_{1xf}^2 =v_{1yf}^2+(v_{1xi}-v_{1xf})^2$$ $$v_{1xi}^2-v_{1yf}^2-v_{1xf}^2 =v_{1yf}^2+v_{1xi}^2+v_{1xf}^2-2v_{1xf}v_{1xi}$$ $$0=2(v_{1yf}^2+v_{1xf}^2-v_{1xf}v_{1xi})$$ :::success $$v_{1xf}v_{1xi} = v_{1yf}^2+v_{1xf}^2 = v_{1f}^2$$ ::: ## Variable mass system * rocket formula 1 $v_e =$ Exhaust gas speed $R =m/t$ fuel loss rate (loss mass) $$F = ma$$ :::success $$Rv_e = ma$$ ::: * rocket formula 2 $$\Delta v = v_eln\frac{m_i}{m_f}$$ $$P = mv = v_edm$$ $$\Delta v = \int_{m_i}^{m_f}\frac{v_e}{-m}dm = v_e\int_{m_i}^{m_f}\frac{-1}{m}dm $$ :::success $$= v_e(ln(m_i)-ln(m_f)) = v_eln\frac{m_i}{m_f}$$ ::: * graph (speed vs time) 
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up