# Friction ## The of Dry friction <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/SkCbjqMElx.png) </div> **motion impending** $$f_s = F$$ $$f_{max} = \mu_s N$$ * not reach the maximum friction $$f_s \not=F$$ **on motion** $$f_k = \mu_kN$$ $$F = f_k$$ ## Coeffcient of friction $$\mu_s = F/N$$ 1. $\theta = 0$ on friction 2. $\theta<\phi_s$ $$N = Wcos(\theta) \qquad F = Wsin(\theta)$$ $$tan(\phi) = F/N = cos(\theta)/sin(\theta) = tan(\theta) <tan(\phi_s$$ no motion 3. $\theta = \phi_s$ $$N = Wcos(\theta) \qquad F = Wsin(\theta)$$ $$tan(\phi) = F/N = cos(\theta)/sin(\theta) = tan(\theta) = tan(\phi_s$$ $$f = f_{max} = F = \mu_sN$$ 4. $\theta>\phi_s$ $$N = Wcos(\theta)$$ $$f_{max} = \mu_sN = Ntan(\phi_s)<Ntan(\theta)$$ $$F = f_k = \mu_kN$$ ## Square threaded screw :::success $$\theta = tan^{-1}(\frac{P}{2\pi r})$$ ::: * lead angle : $\theta$ * lead : $L$ single-threaded screw $L = P$ double-threaded screw $L = 2P$ triple-threaded screw $L = 3P$ **self-locking** $$\phi_s>\theta$$ ## Axle friection (journal bearings) <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/S1OajqGNeg.png) </div> $$\sum F_y = 0$$ $$N = W$$ $$\sum M = 0$$ $$M = Nd$$ * offset position : $d$ ## Disk friction (thrust bearing) <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/rJR12qGVlx.png) </div> $$\Delta N = (F/A)\Delta A$$ $$= (F/\pi(R^2_1-R^2_2))\Delta A$$ $$\Delta f = \mu_k\Delta N$$ $$\Delta M = r\Delta f = r\mu_kF\Delta A/\pi(R^2_1-R^2_2)$$ $$M = \int dM = \frac{\mu_kF}{\pi(R^2_1-R^2_2)}\int dA$$ $$= \frac{\mu_kF}{\pi(R^2_1-R^2_2)}\int_0^{2\pi}\int_{R_1}^{R_2r}r^2\ dr\ d\theta$$ $$= \frac{\mu_kF}{\pi(R^2_1-R^2_2)}\int_0^{2\pi}1/3(R_1^3-R_2^3)\ d\theta$$ $$\frac{2\mu_kF(R^3_1-R^3_2)}{3\pi(R^2_1-R^2_2)}$$ if $R_2 = 0$ and $R_2 = R$ $$M = 2/3\mu_kFR$$ :::success $$M_{max} = 2/3\mu_sFR$$ ::: ## Belt Friction <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/HJ-rn9GNel.png) </div> $$\sum F_x = 0$$ $$(T+\Delta T)cos(\Delta\theta/2)-Tcos(\theta/2)-\mu_s\Delta N = 0$$ $$\sum F_y = 0$$ $$\Delta N-(T+\Delta T)sin(\Delta\theta/2)-Tsin(\Delta\theta/2) = 0$$ $$\Delta Tcos(\Delta\theta/2)-\mu_s(2T+\Delta T)sin(\Delta\theta/2) = 0$$ $\Delta\theta, \Delta N, \Delta F, \Delta T\to 0$ and $cos(\Delta\theta/2)\to1$ $$\lim_{{\Delta\theta} \to {0}}\frac{sin\Delta\theta/2}{\Delta\theta/2} = \lim_{{\Delta\theta\to0}}\frac{1/2cos(\Delta\theta/2)}{1/2(\Delta\theta/2)} = 1$$ $$dT/d\theta-\mu_sT=0$$ $$\int_{T_1}^{T_2}\frac{dT}{T} = \mu_s\int_0^{\phi}d\theta$$ $$ln(T_2)-ln(T_1) = \mu_s\phi$$ $$ln(T_2/T_1) = \mu_s\phi$$ :::success $$T_2/T_1 = e^{\mu_s\phi}$$ ::: **V-shaped** <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/H1JI35GVee.png) </div> $$dT/T = \mu_sd\theta/sin(\beta/2)$$ :::success $$T_2/T_1 = ^{\mu_s\phi /sin(\beta/2)}$$ :::