# Statics of particles ## Force on a particle (several concurrent force) * concurrent force : all force pass through a point. * coplanar force force : contained in the same plane. **Common solutions** 1. Law of sines : $$F^2 = F_1^2+F_2^2-2F_1F_2cos(\theta)$$ 2. Law of cosines : $$\frac{F_1}{sin(\theta_1)} = \frac{F_2}{sin(\theta_2)} = \frac{F_3}{sin(\theta_3)}$$ ## xy components of a force <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/SJsrw9f4lg.png) </div> $F$ may be resolved into a component $F_x$ and $F_y$ . $$F = F_x+F_y$$ * x component $F_x$: $$F_x = |F_x|\vec x$$ $$F_x = Fcos(\theta)$$ * y component $F_y$: $$F_y = |F_y|\vec y$$ $$F_y = sin(\theta)$$ * angle $\theta$ : $$tan(\theta) = \frac{F_y}{F_x}$$ * Force $F$ : $$F^2 = F_x^2+F_y^2$$ ## Addition of force by summing x and y components $$F = F_x+F_y$$ $$F_x = \sum F_{xi}$$ $$F_y = \sum F_{yi}$$ $$\theta = tan^{-1}(F_y/F_x)$$ ## Equilibrium of a particle $$F_{tt} = \sum F_i = 0$$ $$\sum(F_{xi}+F_{yi}) = 0$$ $$\sum F_{xi} + \sum F_{yi} = 0$$ $$\sum F_{xi} = 0$$ $$\sum F_{yi} = 0$$ * If the resultant force acting on a particle is zero, the particle will remain at reat (Follow Newton's first law of motion) ## Force on different planes * **on plane hv** $$F = F_h+F_v$$ * $F_h$ : vertical component of $F$ * $F_v$ : horizotal compmnent of $F$ $$F_h = Fcos(\theta)$$ $$F_v = Fsin(\theta)$$ * **on plane xy** Plane hv is perpendicular to plane xy, Only $F_v$ parallel to the xy plane. <div style="text-align: center;"> ![plane hv to plane xy](https://hackmd.io/_uploads/HJgJvgjt1g.png) </div> $$F = F_x+F_y$$ * x compmnent $$F_x = F_hcos(\phi)$$ $$F_x = Fcos(\theta)cos(\phi)$$ * y compmnent $$F_y = F_v$$ ## Force in space <div style="text-align: center;"> ![image](https://hackmd.io/_uploads/rkY7_5z4lx.png) </div> $$F = F_x+F_y+F_z$$ $$F^2 = F_x^2+F_y^2+F_x^2$$ :::success $$= F^2cos^2(\theta_x)+F^2cos^2(\theta_y)+F^2cos^2(\theta_z)$$ ::: * thus $cos^2(\theta_x)+cos^2(\theta_y)+cos^2(\theta_z) = 1$ *** $$cos(\theta_x) = F_x/F$$ $$cos(\theta_y) = F_y/F$$ $$cos(\theta_z) = F_z/F$$ $$F = F_x\vec x+F_y\vec y+F_z\vec z$$ $$= F(cos(\theta_x)\vec x+cos(\theta_y)\vec y+cos(\theta_z)\vec z) = F\vec\lambda$$ $$\vec\lambda = \frac1F(F_x\vec x+F_y\vec y+F_z\vec z)$$ ## Addition of force in space $$F = F_x+F_y+F_z = \sum F_i$$ $$F_x = \sum F_{xi}$$ $$F_y = \sum F_{yi}$$ $$F_z = \sum F_{zi}$$ ## Equilibrium of a particle in space $$F_{tt} = \sum F_i = 0$$ $$F_x = \sum F_{xi} = 0$$ $$F_y = \sum F_{yi} = 0$$ $$F_z = \sum F_{zi} = 0$$