# Gravity <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyJPCgl4gx.png" alt="image"width="500"> </div> $$F = \frac{GMm}{r^2}$$ $$\vec F = \frac{GMm}{r^2}\vec r$$ ## Surface gravity $$F = ma$$ $$a_g = g = \frac{GM}{r^2}$$ * Consider centrifugal force $$F_{net} = 0 = -mg+F_c+N$$ $$F_c = mv^2/r = mš^2r$$ $$N = mg-F_c = mg-mš^2r$$ if $N = 0$ $$a = g-š^2r$$ ## Gravitational potential energy $$W = Fx$$ $$W_g = -GMm\int_{r}^{\infty}\frac{1}{r^2}$$ $$= (-\frac{GMm}{\infty})-(-\frac{GMm}{r})$$ $$= 0-(-\frac{GMm}{r})$$ :::success $$W_g= \frac{GMm}{r}$$ ::: ## Gravity inside the earth $$D = \frac{M_e}{\frac{4}{3}\pi R^3}$$ $$M = D\frac{4}{3}\pi r^3 = M_e\frac{r^3}{R^3}$$ :::success $$F =\frac{GMm}{r^2} = \frac{GM_em}{R^3}r$$ ::: ## Escape velocity $$E = K+U = \frac{1}{2}mv^2-(\frac{GMm}{r}) = 0$$ :::success $$v = \sqrt{\frac{2GM}{R}}$$ ::: ## Kepler's laws of planetary motion 1. Orbit law: the sun is at the focus of the elliptical orbit of planetary motion The distance between the two foci of the ellipse $= aĆe$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkSZ1-x4le.png" alt="image"width="500"> </div> * a : semi-axis length * e : Eccentricity 2. Area law: Equal area swept per unit time $\frac{dA}{dt}$ is a constant <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SyghGJ-xNxx.png" alt="image"width="500"> </div> $$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \frac{1}{2}r^2š$$ 3. cycle law: $$L = rp = rmv = r^2mš$$ $$\frac{dA}{dt} = \frac{1}{2}r^2š$$ $$\frac{dA}{dt} = L/2m$$ $$F = ma$$ $$\frac{GMm}{r^2} = mv^2/r = mš^2r$$ $$š = 2\pi/T$$ $$\frac{GMm}{r^2} = m\frac{4\pi^2}{T^2}r$$ :::success $$T^2 = (\frac{4\pi^2}{GM})r^3$$ ::: so $\frac{T^2}{r^3}$ is comstant ## Orbital energy <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkLik-gNel.png" alt="image"width="300"> </div> $$U = -\frac{GMm}{r}$$ $$\frac{GMm}{r^2} = mv^2/r$$ $$K = \frac{1}{2}mv^2 = \frac{GMm}{2r}$$ $$K = -U/2$$ $$E = K+U = \frac{GMm}{2r}-\frac{GMm}{r}$$ :::success $$E = -\frac{GMm}{2r} = -K$$ ::: * Circular orbit $E = -\frac{GMm}{2r}$ radius :ć$r$ * Elliptical orbit $E = -\frac{GMm}{2\alpha}$ longest diameter of ellipse : $2\alpha ## Gravity & Space  1. gravity environment 2. A space whose acceleration is equal to the acceleration due to gravity 3. The acceleration of an object is equal to the acceleration due to gravity The above three situations are the same Curved spacetime  Einstein ring (gravitational lensing) <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/SkmbDBmVJx.jpg" alt="image"width="300"><img src="https://hackmd.io/_uploads/SywNeWxElx.png" alt="image"width="300"> </div>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up