# Volumetric strain $$\frac{dV+V}{V} = (\frac{x+dx}{x})(\frac{y+dy}{y})(\frac{z+dz}{z})$$ $$= (1+\frac{dx}{x})(1+\frac{dy}{y})(1+\frac{dz}{z})$$ $$= 1+\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}+\frac{dxdy}{xy}+\frac{dydz}{yz}+\frac{dxdz}{xz}+\frac{dxdydz}{xyz}$$ * $\frac{dxdy}{xy} \to 0$ * $\frac{dydz}{yz} \to 0$ * $\frac{dxdz}{xz} \to 0$ * $\frac{dxdydz}{xyz} \to 0$ $$= 1+\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}$$ $$\frac{dV+V}{V} = 1+dV = 1+\frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}$$ :::success $$dV = \frac{dx}{x}+\frac{dy}{y}+\frac{dz}{z}$$ ::: ## Uniform stress $$\frac{P_x}{A_{\perp x}} = \frac{P_y}{A_{\perp y}} = \frac{P_z}{A_{\perp z}}$$ $$\frac{dV}{V} = 3\frac{P}{A}\frac1E_V(1-2\mu)$$ ## Volume elastic modulus $$\frac{F}{A} = E_V\frac{dV}{V}$$ $$E_V = \frac{\frac{P}{A}}{\frac{dV}{V}}$$ $$= \frac{\frac{P}{A}}{ 3\frac{P}{A}\frac1E_V(1-2\mu)}$$ :::success $$= \frac{E}{3(1-2\mu)} = \frac{E}{3-6\mu}$$ :::
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up