# Zeroth & First Laws of Thermodynamics ## The Zeroth Laws of Thermodynamics <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1cxIZeEel.png" alt="image"width="350"> </div> Any object has a property called temperature. When two objects reach thermal equilibrium, we say that the temperature is equal. ## Triple point * the temperature at which the triple point of water (solid, liquid, gas) coexists : $T3$ $T3=273.16K$ (extrapolation method) $$T = CP$$ * barometric pressure : $P$ $$P = P_0-\rho gh$$ $$T_3 = Cp_3$$ :::success $$T = T_3(\frac{P}{P_3})$$ ::: ## Ideal temperature The temperature measured by continuously reducing the air pressure approximates the ideal temperature. ## Conversion of temperature $$F = \frac95C+32$$ $$K = 273.15+C$$ $$K = (F-32)(\frac59)+273.15$$ ## Thermal expansion **linear** $$\alpha_L = \frac{1}{L}\frac{dL}{dT}$$ $$\Delta L = L\alpha_L\Delta T$$ * linear thermal expansion : $\alpha_{L}$ * length : ${L}$ * change in length : ${\Delta L}$ * change in temperature : ${\Delta T}$ **volumetric** $$\alpha_V = \frac{1}{V}\frac{dV}{dT}$$ $$\Delta V = V\alpha_V\Delta T$$ * volumetric thermal expansion : $\alpha_{V}$ * volume : ${V}$ * change in volume : ${\Delta V}$ $$\alpha_{V} \simeq 3\alpha_{L}$$ ## Heat capacity &Specific heat $$C = \lim_{\Delta T \to 0}\frac{\Delta Q}{\Delta T}$$ $$Q = C\Delta T$$ * Heat capacity : $C$ * change in Heat Energy : $\Delta 𝑄$ * change in temperature : ${\Delta T}$ $$C = c\cdot m$$ $$Q = cm\Delta T$$ * Specific heat : $c$ ## First Laws of Thermodynamics $$W = \int Fdx = \int P dV$$ $$dW = F(dx) = PA(dx) = P(dV)$$ $$\Delta E_{int} = Q - W $$ * change in internal energy : $\Delta E_{int}$ * heat added : $Q$ * work done by the system : $W$ ## A special case of the first law of thermodynamics 1. **Adiabatic Process** ![image](https://hackmd.io/_uploads/S1uuwWxEle.png) No heat is exchanged with the surroundings. $$P V^\gamma = C$$ * constant : $C$ $$\gamma = \frac{C_P}{C_V}$$ * The Specific heat capacity at constant pressure : $C_P$ * The Specific heat capacity at constant volume : $C_V$ * adiabatic index : $\gamma$ $$Q = C_Vn\Delta T$$ $$Q = C_Pn\Delta T$$ * The number of moles of gas : $n$ 2. **Isochoric Process** ![image](https://hackmd.io/_uploads/H1mKPbxEll.png) the volume of the system remains constant. $$W = P \Delta V$$ $$\Delta V = 0 \qquad W = 0$$ $$Q = \Delta E_{int}$$ 3. **Cyclic Process** ![image](https://hackmd.io/_uploads/HyoYPbg4ex.png) return a system to its initial state in a cycle. $$\oint dE_{int} = 0$$ $$\oint dQ = \oint dW$$ where the integral is over the complete cycle 4. **Free Expansion** An irreversible process in which a gas expands into an evacuated space without doing work, without any heat exchange and no change in internal energy. $$\Delta E_{int} = 0$$ $$Q = 0 \qquad W = 0$$ ## Heat transfer rate $$P = \dot{Q} = \frac Qt$$ 1. **Heat Conduction** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HysLIWx4gx.png" alt="image"width="350"> </div> $$P_{cond} = KA\frac{T_H-T_L}{L}$$ * thermal conductivity : $K$ * distance between the two isothermal planes : $L$ * area of the surface : $A$ * temperature : $T$ $$K =\frac{P_{cond} L}{A \Delta T}$$ 2. **convection** <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/HJvvI-lVeg.png" alt="image"width="450"> </div> $$ P_{conv} = hA\Delta T $$ * heat transfer coefficient : $h$ * difference in temperature between a solid surface and surrounding fluid : $\Delta T$ * area of the surface : $A$ $$h = \frac {P_{conv}}{A\Delta T}$$ 3. **radiation** $$P_{rad} = \sigma\varepsilon AT^4$$ * The Stefan-Boltzmann Constant : $\sigma$ * emissivity coefficient of the object "(1) for a black body" : $\varepsilon$ * area of the surface : $A$ * temperature : $T$