# Forces in beams and cables ## Shear $$V-(W\Delta x)-(V+\Delta V) = 0$$ $$\Delta V = -W\Delta x$$ $$\lim_{\Delta \to 0}$$ $$dV/dx = -W$$ $$dV = -W\ dx$$ $$\int_{x_i}^{x_f} dV = \int_{x_i}^{x_f} W(x)\ dx$$ :::success $$\Delta V = \int_{x_i}^{x_f} W(x)\ dx$$ ::: ## Bending moment $$\sum M = 0$$ $$(M+\Delta M)-M-V\Delta x+W\Delta x(\Delta x/2) = 0$$ $$\Delta M/\Delta x = V-W\Delta x/2$$ $$\lim_{\Delta \to 0}$$ $$dM/dx = V$$ $$\int_{x_i}^{x_f} dM = \int_{x_i}^{x_f} V(x)\ dx$$ $$\Delta M = \int_{x_i}^{x_f} V(x)\ dx$$ :::success $$M = \int \int W(x)\ dx$$ :::