# Linear motion
## Moving distance
* Stationary or moving
The object moved : $x_{initial} \not= x_{final}$
The object is not moving : $x_{initial} = x_{final}$
<div style="text-align: center;">
<img src="https://hackmd.io/_uploads/rkJWjJl4gx.png" alt="image" width="300" height="250">
</div>
* Displacement & path
Displacement : Displacement is the magnitude (length) of the displacement vector.
Path : Path length is how far the object moved as it traveled from its initial position to its final position.
## Velocity
<div style="text-align: center;">
<img src="https://hackmd.io/_uploads/H1Da9JgVlg.png" alt="image" width="300" height="200">
</div>
Velocity is slope of position versus time.
$$v_{avg} = \frac{Δx}{Δt} = \frac{x_f-x_i}{t_f-t_i}$$
:::success
$$v = \lim_{{Δt \to 0}}\frac{Δx}{Δt} = \frac{dx}{dt}$$
:::
* Speed & Velocity
Velocity is a vector but speed is a scalar.
$$speed = \frac{path}{time} \qquad velocity = \frac{displacement}{time}$$
## Acceleration
Acceleration is slope of velocity versus time.
$$a_{avg} = \frac{Δv}{Δt} = \frac{v_f-v_i}{t_f-t_i}$$
:::success
$$a = \lim_{{Δt \to 0}}\frac{Δv}{Δt} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$
:::
## Relationship between position, velocity and acceleration
* if a is a constant
$$v = v_i+at$$
$$x_f-x_i = v_it+\frac{1}{2}at^2$$
$$v_f^2 = v_i^2+2a(X_f-X_i)$$
$$x_f-x_i = \frac{1}{2}(v_i+v_f)⋅t$$
$$x_f-x_i = v_ft-\frac{1}{2}at^2$$
$$a = \frac{v_f-v_i}{t}$$
* When free falling
$x_i = 0 \qquad v_i = 0 \qquad a = g$
$$x_f = x_i+v_it+\frac{1}{2}at^2 ⇒ h = \frac{1}{2}gt^2$$
## Graph
<div style="text-align: center;">
<img src="https://hackmd.io/_uploads/Syc9ikgExg.png" alt="image"width="300" height="800">
</div>
## Differentiation and Integration
The integral of acceleration with respect to time is velocity.
The integral of velocity with respect to time is position.
$$a = \frac{dv}{dt} \qquad v = ∫adt$$
$$v = at+v_i$$
$$x = \frac{dV}{dt} \qquad x = ∫vdt = ∫(at+v_i)dt$$
:::success
$$x = x_i+v_it+\frac{1}{2}at^2$$
:::