# Linear motion ## Moving distance * Stationary or moving The object moved : $x_{initial} \not= x_{final}$ The object is not moving : $x_{initial} = x_{final}$ <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/rkJWjJl4gx.png" alt="image" width="300" height="250"> </div> * Displacement & path Displacement : Displacement is the magnitude (length) of the displacement vector. Path : Path length is how far the object moved as it traveled from its initial position to its final position. ## Velocity <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/H1Da9JgVlg.png" alt="image" width="300" height="200"> </div> Velocity is slope of position versus time. $$v_{avg} = \frac{Δx}{Δt} = \frac{x_f-x_i}{t_f-t_i}$$ :::success $$v = \lim_{{Δt \to 0}}\frac{Δx}{Δt} = \frac{dx}{dt}$$ ::: * Speed & Velocity Velocity is a vector but speed is a scalar. $$speed = \frac{path}{time} \qquad velocity = \frac{displacement}{time}$$ ## Acceleration Acceleration is slope of velocity versus time. $$a_{avg} = \frac{Δv}{Δt} = \frac{v_f-v_i}{t_f-t_i}$$ :::success $$a = \lim_{{Δt \to 0}}\frac{Δv}{Δt} = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$ ::: ## Relationship between position, velocity and acceleration * if a is a constant $$v = v_i+at$$ $$x_f-x_i = v_it+\frac{1}{2}at^2$$ $$v_f^2 = v_i^2+2a(X_f-X_i)$$ $$x_f-x_i = \frac{1}{2}(v_i+v_f)⋅t$$ $$x_f-x_i = v_ft-\frac{1}{2}at^2$$ $$a = \frac{v_f-v_i}{t}$$ * When free falling $x_i = 0 \qquad v_i = 0 \qquad a = g$ $$x_f = x_i+v_it+\frac{1}{2}at^2 ⇒ h = \frac{1}{2}gt^2$$ ## Graph <div style="text-align: center;"> <img src="https://hackmd.io/_uploads/Syc9ikgExg.png" alt="image"width="300" height="800"> </div> ## Differentiation and Integration The integral of acceleration with respect to time is velocity. The integral of velocity with respect to time is position. $$a = \frac{dv}{dt} \qquad v = ∫adt$$ $$v = at+v_i$$ $$x = \frac{dV}{dt} \qquad x = ∫vdt = ∫(at+v_i)dt$$ :::success $$x = x_i+v_it+\frac{1}{2}at^2$$ :::