# Lagrangian mechanics ## Generalized system Removing generalized coordinate space effects.Summarize all factors and discuss change using the entire system. $$q = \sum_i r_i\frac{\partial r}{\partial q}$$ * Generalized Displacement : $q$ * Generalized Velocity : $\dot q = \frac{dq}{dt}$ * Generalized Acceleration : $\ddot q = \frac{d^2q}{dt^2}$ ## Lagrangian * Potential energy : $T$ * Kinetic energy : $V$ * Lagrangian : $L$ $$L = T-V$$ $$T = \frac12\sum_i m_i\dot q_i^2 $$ $$V = \sum_i\frac12k_i(\Delta q)^2$$ $$Q = m\ddot q$$ ## Generalized force * Generalized force : $Q$ $$\Delta W = \sum_i Q_i\Delta q_i$$ $$Q = \sum_i F_i\frac{\partial r}{\partial q}$$ ## Lagrange's equations $$\frac d{dt}(\frac{\partial L}{\partial \dot q}) = \frac{\partial L}{\partial q}$$ * Include generalized force $$\frac d{dt}(\frac{\partial L}{\partial \dot q})-\frac{\partial L}{\partial q} = Q_i$$ $$\frac d{dt}(\frac{\partial (T-V)}{\partial \dot q})-\frac{\partial (T-V)}{\partial q} = Q_i$$ | formula | Physical meaning | |:-------------------------------------------------:|:-----------------------------------------------------------------------------------------:| | $\frac{\partial L}{\partial \dot q}$ | Generalized momentum | | $\frac{d}{dt} \frac{\partial L}{\partial \dot q}$ | Rate of change of generalized momentum(Inertial force) | | $-\frac{\partial L}{\partial q}$ | Potential energy gradient(Generalized projection of conservative force) | | $Q_i$ | Projection of external or non-conservative forces in the generalized coordinate direction | $$\text{Inertial force} = \text{Conservative force} + \text{External force}$$ ## Engineering Examples (1/4 suspension system model) ### System Settings * sprung mass : $m_s$ * Damping : $c_s$ * Spring : $k_s$ * unsprung mass : $m_u$ * Wheel damping : $c_t$ * wheel stiffness : $k_t$ * Road surface displacement : $z_r(t)$ ### Generalized coordinate definition $$q = \left[ \begin{matrix} z_s\\z_u \end{matrix}\right]$$ ### Kinetic energy and potential energy * body Kinetic energy : $T_s = \frac12m_s\dot z_s^2$ * tire Kinetic energy : $T_u = \frac12m_u\dot z_t^2$ $$T = T_s+T_u = \frac12(m_s\dot z_s^2+m_u\dot z_t^2)$$ **** * Suspension springs : $V_s = \frac12k_s(z_s-z_u)^2$ * Tire springs : $V_t = \frac12k_t(z_u-z_r)^2$ $$V = V_s+V_t = \frac12(k_s(z_s-z_u)^2+k_t(z_u-z_r)^2)$$ ### Conservative force $$F_s = c_s(\dot z_u-\dot z_s)$$ $$F_t = c_t(\dot z_r-\dot z_u)$$ $$Q_s = F_s$$ $$Q_u = F_t-F_s$$ ### Applying Lagrange's equation $$\frac d{dt}(\frac{\partial (T-V)}{\partial \dot q})-\frac{\partial (T-V)}{\partial q} = Q_i$$ $$\frac d{dt}\frac{\partial T}{\partial \dot q}+\frac{\partial V}{\partial q} = Q_i$$ #### body $$\frac{d}{dt}(m_s\dot z_s)+k_s(z_s-z_u) = c_s(\dot z_u-\dot z_s)$$ $$m_s\ddot z_s+k_s(z_s-z_u)-c_s(\dot z_u-\dot z_s) = 0$$ #### tire $$\frac{d}{dt}(m_u\dot z_u)+k_s(z_u-z_s)+k_t(z_u-z_r) = c_s(\dot z_s-\dot z_u)+c_t(\dot z_r-\dot z_u)$$ $$m_u\ddot z_u+k_s(z_u-z_s)+k_t(z_u-z_r)-c_s(\dot z_s-\dot z_u)-c_t(\dot z_r-\dot z_u) = 0$$ ### matrix $$\left[ \begin{matrix} m_s&0\\0&m_u \end{matrix}\right]\left[ \begin{matrix} \ddot z_s\\\ddot z_u \end{matrix}\right]+\left[ \begin{matrix} c_s&-c_s\\-c_s&c_s+c_t \end{matrix}\right]\left[ \begin{matrix} \dot z_s\\\dot z_u \end{matrix}\right]+\left[ \begin{matrix} k_s&-k_s\\-k_s&k_s+k_t \end{matrix}\right]\left[ \begin{matrix} z_s\\ z_u \end{matrix}\right] = \left[ \begin{matrix} 0\\k_tz_r-c_t\dot z_r \end{matrix}\right]$$ ## more??? [Lagrange example](https://hackmd.io/VJMibwvgQuONuD8F8OhAYg)
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up