# Rotation of rigid bodies ## Rotation * 1 revolution $= 2\pi$ rad $=360^o$ $$\omega = \dot \theta$$ $$\dot\theta = d\theta/dt$$ $$\alpha = \dot\omega = \ddot\theta$$ $$\dot\omega = d\omega/dt = d^2\theta/dt^2$$ $$v = dr/dt = \omega r$$ :::success $$a = dv/dt = \alpha r$$ ::: *** $$\theta = \theta_i+\omega t$$ $$\omega = \omega_i+\alpha t$$ $$\omega^2 = \omega_i^2+2\alpha\Delta\theta$$ $$\theta = \theta_i+\omega_i t+\frac12\alpha t^2$$ ## Centripetal acceleration $$a_r = \frac{v^2}{r}$$ :::success $$a_r = \ddot\omega r = \omega\times(\omega\times r)$$ ::: ## Momentum and Angular Momentum $$p = mv$$ $$L = I\omega$$ $$L = mr^2\omega = rmv$$ :::success $$L = rp$$ ::: ## Rotational Energy $$K_\omega = \frac12I\omega^2$$