# Linear Algebra ## Introduction 1) Geometry -linear -to study geometry w. linearity -In **2D: lines 3D: planes nD: hyperplanes**(out of the box 超過想像範圍) 2) Abstract algebra -Algebra is a study of basic mathematical structures e.g. **groups, rings, fields**, etc. -Linear alg. studies one of the structures called the **vector space** -followed by logical deduction from basic definitions,we can derive some important theorems 3) Applied mathematics -Linear alg is widely used in applied science -Live mechanics: differential equations (ODE,PDE) -Linear programming was developed during WW2. -Recently applied in **image processing** and **computer graphics**. Application: -Linear programming -[Least square solution](https://textbooks.math.gatech.edu/ila/least-squares.html#:~:text=So%20a%20least%2Dsquares%20solution,difference%20b%20%E2%88%92%20Ax%20is%20minimized.) -Differential equation -Image Processing -Filter -Deep learning ~ [LeNet 5](https://en.wikipedia.org/wiki/LeNet) ## Chapter 1 ### 1.1 Intro The central problem of linear alg is solution of linear equations. The most important and the simplest case is when the **# of unknowns = # of equations**. There are **2** ways to solve linear equations. A) **Elimination method** ([Gaussian elimination](https://en.wikipedia.org/wiki/Gaussian_elimination)) B) **Determinants** ([Cramer's Rule](https://www.purplemath.com/modules/cramers.htm)) 4 aspects that we should look into: I ) The geometry of linear equations n = 2, n = 3 ->higher dimension (hyperplane,LA has any answers/solutions) II ) The interpretation of elimination is a factorization of the coefficient matrix. III) Irregular/singular cases <no unique solution> -> no solution / infinitely many solutions IV) # of operations to solve the system by elimination ### 1.2 Geometry of Linear Equations 2x - y = 1 x + y = 5 <Approach 1> Row picture -> 2 lines in the plane ~> x=2 y=3 : intersection of 2 lines <Approach 2> Column picture $$ x\begin{bmatrix} 2\\ 1\\ \end{bmatrix}+y\begin{bmatrix} -1\\ 1\\ \end{bmatrix}=\begin{bmatrix} 1\\ 5\\ \end{bmatrix} $$ 2x1 (2d space) ->to find the linear combination of $$ \begin{bmatrix} 2\\1\\\end{bmatrix} \begin{bmatrix}-1\\1\\\end{bmatrix} $$ to form a column vector \begin{bmatrix} 1\\5\\\end{bmatrix} parallelogram x=2, y=3 Note: a vector is a n*1 array w. n real numbers, c~n~'s, \begin{bmatrix} c1\\c2\\.\\.\\cn\\\end{bmatrix} in the text, we usually write it as (c~1~,c~2~,...,c~n~) $$ α\begin{bmatrix} c1\\c2\\.\\.\\cn\\\end{bmatrix} = \begin{bmatrix}αc1\\αc2\\.\\.\\αcn\\\end{bmatrix} , α ∈ ℝ , \begin{bmatrix} c1\\c2\\.\\.\\cn\\\end{bmatrix}+\begin{bmatrix} d1\\d2\\.\\.\\dn\\\end{bmatrix} = \begin{bmatrix}c1+d1\\c2+d2\\.\\.\\cn+dn\\\end{bmatrix} $$ same dimension y ∈ ℝ, y ∈ ℝ^2^ $$ y=\begin{bmatrix} y1\\y2\\\end{bmatrix} $$