Try   HackMD

[Note] CS229 Lecture 1 : Introduction

Part I Supervised Learning


Online lecture: https://youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU&si=vuAUi_ytVYB1Jc8V

Main notes: https://cs229.stanford.edu/main_notes.pdf
Other resources: https://github.com/maxim5/cs229-2018-autumn/tree/main


機器學習

當我們有這樣一筆數據時

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

我們可能會想找出土地面積(左)與房價(右)的關係,
以此預測給定面積的房屋價格。

首先,我們將數據描繪在以price為y,
以square feet為x的圖表上。
我們可以觀察出x與y之間呈現了線性關係(即可以將x與y的關係以y=ax+b這樣的方程式表示)。

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

所以我們現在要做的就是找出這條方程式。

大家高一時應該會學到求這條方程式的方法(二維數據分析那章),
那就是最小平方法
機器學習同理,
一樣是要用統計方法運算,
最後擬合出這條直線。

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

不過擬合直線的方法有很多種,
甚至能拓展至高維特徵,
不只用於單變量數據,
之後會再提到。


學習方法

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

training set就是資料集
就像上面的土地面積與房價的關係就是資料集,
通常我們把

x(土地面積)稱為feature
y
(房價)稱為label
也就是說,
X
為資料輸入(the space of input values),
Y
為預測輸出(the space of output values)。

learning algorithm是擬合方程式的方法
我剛剛有提到擬合直線的方法有很多種,
所以我們可以依照任務需求選擇適合的演算法來訓練model,
這會很大程度的影響效率和準確度。

h是指hypothesis
也就是機器要算出來(優化)的方程式,
通常我們將h表示為:
hθ(x)=θ0+θ1x1+θ2x2+...θdxd

為了避免誤會,我們會將
hθ(x)
寫作
h(x)

機器學習的目標就是希望找出
h(x)
能夠正確地將
XY
(將
X
映射(map)至
Y
)。

θ指的是參數(parameters),又叫做權重(weights)
是在訓練模型時會被調整的係數。
d
是指dimention,即特徵的維度

我們通常將

(x(i),y(i))稱作training example
也就是模型用來學習的資料,
{(x(i),y(i));i=1,...,n}
指的是整個訓練集
上標
(i)
指的是資料的索引值(index)

以下面數據做為例子,
現在這個訓練集的特徵變成了兩個(土地面積和房間數量),
也就是說特徵的

d=2
所以特徵
x1(i)
指的是第
i
筆資料的土地面積,
x2(i)
指的就是第
i
筆資料的房間數量了。
這裡特別注意,我們一律
x0=1

Image Not Showing Possible Reasons
  • The image was uploaded to a note which you don't have access to
  • The note which the image was originally uploaded to has been deleted
Learn More →

所以假設要用這筆資料做模型的訓練,
就可以設

hθ(x)=θ0+θ1x1+θ2x2

x1是放入Living area這個特徵,
x2
是放入bedrooms這個特徵。

接著就是開始訓練、調整

θ
直到
h(x)
可以很好的以
X
預測
Y

最後有一個東西要提醒,
假如這條擬合曲線是非線性的,

θdxd可能會像是
θd(xd)2
θdlog(xd)
之類的,
整個
h(x)
就可能變成像是
h(x)=θ0+θ1(x1)2+θ2(x2)3+θ3log(x3)+...


總結

其實人工智慧根本就不是什麼玄奇的科技魔法,
只是一台大型的統計計算機罷了。