# Physics II - B15 ## Review Ampere's Law * **Infinite current sheet:** $$ B = \frac{\mu_0 J}2 $$ * **Two parallel infinite current sheets:** $$ B = \mu_0J $$ * **Solenoid:** $$ B = \mu_0 n J $$ ## Magnetic Flux  ## Gauss’ Law in Magnetism  ## Assignments - Chapter 29 <center><img src = "https://i.imgur.com/3a1SrkP.png" width = 650 height = 450></center> $$ B_B > B_C > B_A = 0 $$ <center><img src = "https://i.imgur.com/OR8MDD9.png" width = 650 height = 450></center> <center><img src = "https://i.imgur.com/pOnMNaL.png" width = 650 height = 350></center> $$ \displaystyle B = \frac{\mu_0I}{2r} = \frac{\mu_0\frac{e}{T}}{2r} = \frac{\mu_0\frac{ev}{2\pi r}}{2r} = 12.5(T) $$ <center><img src = "https://i.imgur.com/N1Mg9No.png" width = 650 height = 450></center> $$ \vec B_{total} = \vec B_{straight} + \vec B_{circular} $$ $$ B_{total} = B_{straight} + B_{circular} $$ $$ B_{total}= \frac{\mu_0I}{2r} + \frac{\mu_0I}{2\pi r} = 5.52 \times 10^{-6} (T) $$ <center><img src = "https://i.imgur.com/BAobsmh.png" width = 650 height = 400></center> <center><img src = "https://i.imgur.com/47dR4Jn.png" width = 650 height = 400></center> <br> * The direction of forces can be deduced from the direction of $I_1$ and the magnetic field, as in image. * We have: $$ \vec F_{net} = \vec F_{AB} + \vec F_{BC} + \vec F_{CD} + \vec F_{DA} $$ * $F_{BC}$ and $F_{AD}$ are of the same magnitude and opposite directions. We have: $$ \vec F_{BC} + \vec F_{AD} = 0 $$ * Therefore: $$ F_{net} = F_{AB} - F_{CD} = \frac{\mu_0I_1I_2l}{2\pi}\bigg(\frac{1}{c} - \frac{1}{c+a}\bigg) = 2.7 \times 10^{-5} (N) $$ <center><img src = "https://i.imgur.com/PZLmSgV.png" width = 650 height = 450></center> $$ c > a > d > b $$ <center><img src = "https://i.imgur.com/62TlPeQ.png" width = 650 height = 450></center><br> $a)$ The magnitude and direction of the magnetic field at point $a$ is: $$ B_a = \frac{\mu_0I_1}{2\pi d} = 2 \times 10^{-4} (T) $$ The direction of $B_a$ would be upward. $b)$ The magnitude and direction of the magnetic field at point $b$ is: $$ B_b = \frac{\mu_0(I_1-I_2)}{2\pi d} = -1.3 \times 10^{-4} (T) $$ The direction of $B_b$ would be downward. <center><img src = "https://i.imgur.com/uRPH2Ql.png" width = 650 height = 400></center>
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up