# Regression 步驟 --- :::info **Model** - 找一個Function Set - Function - ex. **y=b+w~cp~** - w和b是參數,可以是任何數值 - Linear Model - ex. **y=b+$\sum_{}w_ix_i$** - feature: x~i~ (input的object抽出來的數值) ::: :::info **Goodness of Fuction** - 上標 : 編號;下標 : object的component - input: x^1^;output: $\hat{y}$^1^ - 用hat表示正確的值 - loss function: 自己訂,看結果如何判斷好壞 - L(f) = L(w,b) = $$\sum_{n=1}^5 (\hat{y}^n-(b+w*x^n))^2$$ - 用估測誤差,來判斷Loss function - 偏紅色、誤差大、function差、loss值大 - 範例: -  ::: :::info **Best Function** - f^*^: 選擇能讓L(f)最小的function - 如何解Function找L(f)? - 線性代數 - Gradient Descent (L是可微分的) -  ::: Gradient Descent(梯度下降) --- :::success **case1 (只有一個parameter)** * function要可微並對function微分 * 若微分結果為負代表local min在x軸右側(相加)反之在左側(相減)因此使得下面公式 * w~n~ = w~n-1~ - $\eta$ $\dfrac{dL} {dw}$ w=w~n-1~ where $\eta$為learning rate(自訂),而w~0~也為自訂 * 當微分結果為0時代表找到local min * 若function為linear global min=local min  ::: :::success **case2 (多個parameter)** * 跟上述一樣但方法改成偏微分使得: * w~n~ = w~n-1~ - $\eta$ $\dfrac{\delta L} {\delta w}$ w=w~n-1~ * b~n~ = b~n-1~ - $\eta$ $\dfrac{\delta L} {\delta b}$ w=b~n-1~  ::: 名詞解釋 --- :::warning **Overfitting** - Model Select - 越複雜的Model在訓練上也許會給予越好的結果(過度貼合訓練集),卻不一定在測試的資料上也一樣好 ::: :::warning **Underfitting** - 模型過度簡單,無法貼合訓練集曲線 ::: :::warning **Regularization** - $y = b + \sum w_{i}x_{i}$ - $L=\sum\limits_{n}{(\hat{y}^n-(b+w \cdot x^n_{cp}))^2}+\color{#df8500}{\lambda\sum(w_{i})^2}$ 預期function w參數值小(趨近0),使輸出對輸入的變化較不敏感、較平滑  ::: ###### tags: `ML2020`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up