# First-order differenticial equation ###### tags:`工程數學` ## 分離變數型微分方程式(Separable Equation) ### 直接分離變數型 #### Type 1: $y' = g(x) \times h(y)$ $\Rightarrow \dfrac{dy}{dx} = g(x) \times h(y)$ 則可分離成 $\dfrac{dy}{h(y)} = g(x)\ dx$ 接著對兩邊做積分 $\displaystyle\int\dfrac{dy}{h(y)} = \displaystyle\int g(x)\ dx + c$ > Example > > $y' = \dfrac{y}{1+x}$ > > $\dfrac{dy}{dx} = \dfrac{y}{1+x}$ > > 原式可分離成 $\dfrac{dy}{y}=\dfrac{1}{1+x}\ dx$ > > 兩邊同時積分 $\displaystyle\dfrac{dy}{y}=\int\dfrac{dx}{1+x}$ > > $\Rightarrow \ln{|y|} = \ln |(1+x)|+c,\ c=constant$ > > $\Rightarrow y = e^c(1+x)$[^1][^2][^3] [^1]: `general solution` (通解)、`explicit solution` (詳盡解),$c$ 可以是任意的常數 [^2]: $c$ 在某個條件下的解稱為particular solution (特解) [^3]: $y = 0$ 時的解稱為 `trivial solution` (平凡無價值之解、零解),it is not coming from the general solution and also called `singular solution`(發散、奇異) #### Type 2: $M_1(x)\ M_2(y)\ dx+ N_1(x)\ N_2(y)\ dy=0$ 則可分離成 $\dfrac{M_1(x)}{N_1(x)}\ dx+\dfrac{N_2(y)}{M_2(y)}\ dy = 0$ 即 $\displaystyle\int\dfrac{M_1(x)}{N_1(x)}\ dx+\displaystyle\int\dfrac{N_2(y)}{M_2(y)}\ dy = c$ > Example > > $(xy+3x-y-3)\ dx=(xy-2x+4y-8)\ dy$ > > $(x-1)(y+3)\ dx=(x+4)(y-2)\ dy$ > > $\dfrac{(x-1)}{(x+4)}\ dx=\dfrac{y-2}{(y+3)}\ dy$ > > **多項式分解** > > $1 - \dfrac{5}{(x+4)}\ dx=1 - \dfrac{5}{(y+3)}\ dy$ > > $\displaystyle\int\Big(1 - \dfrac{5}{(x+4)}\Big)\ dx-\displaystyle\int\Big(1 - \dfrac{5}{(y+3)}\Big)\ dy=c$ > > 兩邊積分$\Rightarrow x-5\ln |x+4| = y-5\ln |y+3|+c$ ### 可簡化成分離變數型 * 變數變換 #### 齊次方程式 目的:若一階 ODE 為 $M(x, y)\ dx+N(x, y)\ dy = 0$,其中 $M(x, y)$ 與 $N(x, y)$ 同為 $m$ 次齊次函數,則稱 ODE 為一階齊次 ODE > Example: $(x+y)\ dx-x\ dy=0$ 為齊1次ODE 將原式代為 $M(\dfrac{y}{x})\ dx+N(\dfrac{y}{x})\ dy=0$ 令 $\dfrac{y}{x}=u$,則$dy=u\ dx+x\ du$ (以u取代y) 代入原ODE得 $M(u)\ dx+N(u)(u\ dx+x\ du)=0$ $\Rightarrow \displaystyle\int\dfrac{dx}{x}+\displaystyle\int\dfrac{N(u)}{uN(u)+M(u)}\ du=c$ > Example: > > Find $y'= \dfrac{x-y}{x+y}$ > > $\Rightarrow (x-y)\ dx=(x+y)\ dy$ > > 同除$x$,$(1-\dfrac{y}{x})\ dx=(1+\dfrac{y}{x})\ dy$ > > 令 $\dfrac{y}{x}=u$,則$dy=u\ dx+x\ du$ > > $\Rightarrow (1-u)\ dx=(1+u)\ (u\ dx+x\ du)$ > > $\Rightarrow \dfrac{(1-u)}{(1+u)}=\dfrac{u\ dx+x\ du}{dx}$ > > $\Rightarrow \dfrac{(1-2u-u^2)}{(1+u)}\ dx=x\ du$ > > $\Rightarrow -\dfrac{dx}{x}=\dfrac{(u+1)}{(u^2+2u-1)}\ du$ > > $\Rightarrow \displaystyle\int-\dfrac{dx}{x}=\displaystyle\int\dfrac{(u+1)}{(u^2+2u-1)}\ du$ > > $\Rightarrow -\ln|x|+c_1=\dfrac{1}{2}ln|u^2+2u-1|$ > > $\Rightarrow -2\ln|x|+2c_1=ln|u^2+2u-1|$ > > $x^2(u^2+2u-1)=c,\ \text{where}\ c=e^{2c_1}$ > > 將 $u=\dfrac{y}{x}$ 代入可得 $x^2(\dfrac{y^2}{x^2}+2\dfrac{y}{x}-1)=c$ > > $y^2+2xy-x^2=c$ #### $(a_1x+b_1y+c_1)\ dx+(a_2x+b_2y+c_2)\ dy=0$ 型 屬於$M(x, y)\ dx+N(x, y)\ dy=0$ $\Rightarrow$ 非齊次方程式 $\rightarrow$ 令 $u=\dfrac{y}{x}$ 無法作變數分離 ##### Type 1: 若 $\dfrac{a_1}{a_2}\neq \dfrac{b_1}{b_2}$ 找到兩條線 $\begin{cases} a_1x+b_1y+c_1=0 \\ a_2x+b_2y+c_2=0 \end{cases}$ 的交點 $(\alpha,\ \beta)$ 令 $\begin{cases} u=x-\alpha \\ v=y-\beta \end{cases}$ 以$u$取代$x$,以$v$取代$y$ $\Rightarrow \begin{cases} dx=du \\ dy=dv \end{cases}$ 將上式替換代入 ODE,可得一階齊次 ODE $(a_1u+b_1v)\ du+(a_2u+b_2v)\ dv=0$ 利用一階齊次 ODE 之求解方式來求解 > Example > > Find $(2x-5y+3)\ dx-(2x+4y-6)\ dy=0$ > > 由 $\begin{cases} 2x-5y+3=0 \\ 2x+4y-6=0 \end{cases} \Rightarrow$ 交點為 $(1, 1)$ > > 令 $\begin{cases} u=x-1 \\ v=y-1 \end{cases}\Rightarrow \begin{cases} dx=du \\ dy=dv \end{cases}$ > > 代回原本的公式$(2u-5v)\ du-(2u+4v)\ dv=0$ > > 令$\dfrac{v}{u}=s\Rightarrow dv=s\ du+u\ ds$ > > 兩邊同除 $u\Rightarrow (2-5\dfrac{v}{u})\ du-(2+4\dfrac{v}{u})\ dv=0$ > > $(2-5s)\ du=(2+4s)\ (s\ du+u\ ds)$ > > $\dfrac{2-5s}{2+4s}=s+u\dfrac{ds}{du}$ > > $\dfrac{-4s^2-7s+2}{4s+2}=\dfrac{u\ ds}{du}$ > > $\dfrac{du}{u}=\dfrac{4s+2}{-4s^2-7s+2}\ ds$ > > $\displaystyle\int\dfrac{du}{u}=\displaystyle\int\dfrac{4s+2}{-4s^2-7s+2}\ ds$ > > 因式分解[^4]:$\dfrac{4s+2}{-4s^2-7s+2}=\dfrac{4s+2}{-(4s-1)(s+2)}$=$-\Big(\dfrac{\tfrac{4}{3}}{4s-1}+\dfrac{\tfrac{2}{3}}{s+2}\Big)$ > > 代入原式可得 $\dfrac{1}{u}\ du=-\Big(\dfrac{\frac{4}{3}}{4s-1}+\dfrac{\frac{2}{3}}{s+2}\Big)\ ds$ > > $\Rightarrow \dfrac{4}{3}\dfrac{ds}{4s-1}+\dfrac{2}{3}\dfrac{ds}{s+2}+\dfrac{1}{u}\ du=0$ > > $\Rightarrow\displaystyle\int \dfrac{4}{3}\dfrac{ds}{4s-1}+\displaystyle\int\dfrac{2}{3}\dfrac{ds}{s+2}+\displaystyle\int\dfrac{1}{u}\ du=0$ > > $\Rightarrow\dfrac{1}{3}\ln|4s-1|+\dfrac{2}{3}\ln|s+2|+\ln|u| = c_1$ > > $\Rightarrow\ln|4\dfrac{y-1}{x-1}-1|+2\ln|\dfrac{y-1}{x-1}+2|+3\ln|x-1| = 3c_1$ > > $\Rightarrow\ln|4y-x-3|+2\ln|y+2x-3| = 3c_1$ > > $\Rightarrow(4y-x-3)(y+2x-3)^2=c,\text{ where } c=e^{3c_1}$ [^4]: 為了可形成$\ln$之積分項 ##### Type 2: 若 $\dfrac{a_1}{a_2}= \dfrac{b_1}{b_2}=m\neq \dfrac{c_1}{c_2}時$ [^5] [^5]: 原ODE為$(a_1x+b_1y+c_1)\ dx+(a_2x+b_2y+c_2)\ dy=0$ 令 $a_2x+b_2y=t$,則 $a_1x+b_1y=mt$ ($t$ 取代 $y$) [^6],且 $dy=\dfrac{dt-a_2\ dx}{b_2}$ [^6]: 取代 $x$ 或 $y$ 都可以 將以 $t$ 之變換代入原ODE,則 $(mt+c_1)\ dx+(t+c_2)\dfrac{dt-a_2\ dx}{b_2}=0$ 即$\displaystyle\int\dfrac{t+c_2}{a_2t+a_2c_2-b_2mt-b_2c_1}\ dt=\displaystyle\int dx+c$ > Example > > Find $(2x-4y-3)dy+(x-2y+3)dx=0$ > > $t = x-2y,\ dx = dt+2dy$ (以 $t$ 取代 $x$) > > 代入原式 $(2t-3)dy+(t+3)(dt+2dy)=0$ > > $\Rightarrow (\dfrac{2t-3}{t+3})dy=-dt-2dy$ > > $(\dfrac{4t+3}{t+3})dy=-dt$ > > $\Rightarrow \dfrac{t+3}{4t+3}dt+dy=0$ > > 分式分解 $\dfrac{t+3}{4t+3}=\dfrac{1}{4}+\dfrac{\frac{9}{4}}{4t+3}$ 代回上式 > > $\displaystyle\int(\dfrac{1}{4}t+\dfrac{9}{4}\times\dfrac{1}{4t+3})dt +\displaystyle\int dy=c_1$ > > $\Rightarrow\dfrac{1}{4}t+\dfrac{9}{16}\ln|4t+3|+y=c_1$ > > $\Rightarrow 4t+9\ln|4t+3|+16y=16c_1$ > > 將 $t=x-2y$ 代入得: > > $4x-8y+9\ln|4x-8y+3|+16y=c, \text{ where }c=16c_1$[^7] [^7]: $\ln$ 內的內容可能會因為過程而有所不同,但都可以套進常數 $c$ #### $y'=f(ax+by+c)$ 型 令 $t=ax+by+c$,則 $dy=\dfrac{dt-adx}{b}$ 代入原 ODE 得 $$\dfrac{dy}{dx}=\dfrac{\tfrac{dt-adx}{b}}{dx}=f(t)$$ 即 $\displaystyle\int\dfrac{dx}{bf(t)+a}=\displaystyle\int dx+c$ > Example > > Find $y'=\tan^2(x+y)$ > > $\therefore$ 令 $x+y=t$ > > $\dfrac{dt-dx}{dx}=\tan^2t \Rightarrow \dfrac{dt}{dx}=1+\tan^2t=\text{sec}^2t$ > > 移項 $\Rightarrow \dfrac{1}{\text{sec}^2t}dt=dx\Rightarrow\cos^2t\ dt=dx$ > > $\because \cos^2t=\dfrac{1+\cos\ 2t}{2} \therefore$ 原式變為 $\displaystyle\int\dfrac{1+cos\ 2t}{2}=\displaystyle\int dx+c$ ## 正合型(Exact Equation[^8]) [^8]: 恰好、剛好 * exact equation * 直接另解 $(x,\ y)$ * modified equation * 積分因子(integrating factor) $I(x,\ y)$ ### Exact Equation #### 定義 設 1st-order ODE 為 $M(x,\ y)dx+N(x,\ y)dy=0$ 若存在一函數 $\phi(x,\ y)$ 滿足 $M(x,\ y)dx+N(x,\ y)dy=d\phi=0$ 則稱 $M(x,\ y)dx+N(x,\ y)dy=0$ 為一階正合 ODE > Example > > $6xy\ dx+3x^2\ dy=0$ > > $d\ (3x^2y)=0$ > > $3x^2y=c$ 為解 此時 $d\phi=\Big(\dfrac{\partial\phi}{\partial x}\Big)_ydx+\Big(\dfrac{\partial\phi}{\partial y}\Big)_xdy=M(x,\ y)dx+N(x, y)dy$ #### 如何知道此ODE是否為正合 假設 ODE $M(x,\ y)dx+N(x, y)dy=0$ 為正合 equation 則由定義知,其必存在一函數中 $(x,\ y)$ 使得 $\Big(\dfrac{\partial\phi}{\partial x}\Big)_y=M(x,\ y)$,且 $\Big(\dfrac{\partial\phi}{\partial y}\Big)_x=N(x, y)$ 假設 $\phi=\phi(x,\ y)$ 為具有連續二偏導數之函數則$$\begin{cases} \dfrac{\partial}{\partial y}\bigg[\Big(\dfrac{\partial \phi}{\partial x}\Big)_y\bigg]_x =\dfrac{\partial^2\phi}{\partial x\partial y}=\Big(\dfrac{\partial M}{\partial y}\Big)_x\\\\ \dfrac{\partial}{\partial x}\bigg[\Big(\dfrac{\partial \phi}{\partial y}\Big)_x\bigg]_y =\dfrac{\partial^2\phi}{\partial x\partial y}=\Big(\dfrac{\partial N}{\partial x}\Big)_y \end{cases}$$ 因此 ODE $\phi(x,\ y)$ 滿足 $M(x,\ y)dx+N(x,\ y)dy=0$ 為正合 quation 時 其判別式為 $$\Big(\dfrac{\partial M(x,\ y)}{\partial y}\Big)_x=\Big(\dfrac{\partial N(x,\ y)}{\partial x}\Big)_y$$ #### 解題方法 若 ODE $M(x,\ y)dx+N(x, y)dy=0$ 為正合 則由定義知 ODE 可改為 $M(x,\ y)dx+N(x, y)dy=d\phi=0$ 因此 ODE 之解為 $\phi(x,\ y)=c$ 此時 $d\phi=\Big(\dfrac{d\phi}{\partial x}\Big)_ydx+\Big(\dfrac{d\phi}{\partial y}\Big)_xdy=M(x,\ y)dx+N(x, y)dy$ 滿足 $$\begin{cases} \Big(\dfrac{\partial\phi}{\partial x}\Big)_y=M(x,\ y)\\\\ \Big(\dfrac{\partial\phi}{\partial y}\Big)_x=N(x, y) \end{cases}\Rightarrow\begin{cases} \phi(x,\ y)=\displaystyle\int^xM(x,\ y)\ dx+g(y)\\\\ \phi(x,\ y)=\displaystyle\int^yN(x,\ y)\ dy+h(x) \end{cases}$$ 比較由積分所求出之兩式取**聯集**後,即可求出 $g(y)$ 跟 $h(x)$ 即可得 $\phi(x,\ y)$ > Example > > Find $(\sin y-y\sin x)\ dx+(\cos x+x\cos y-y)\ dy=0$ > > 令 $\begin{cases} M=\sin y-y\sin x\\ N=\cos x+x\cos y-y \end{cases}$ > > 判斷是否正合 $\Rightarrow\begin{cases} \Big(\dfrac{\partial M}{\partial y}\Big)_x=\cos y-\sin x\\\\ \Big(\dfrac{\partial N}{\partial x}\Big)_y=-\sin x+\cos y \end{cases}\Rightarrow\dfrac{\partial M}{\partial y}=\dfrac{\partial N}{\partial x}$ > > $\begin{cases} \Big(\dfrac{\partial\phi}{\partial x}\Big)_y=M(x,\ y)=\sin y-y\sin x\\\\ \Big(\dfrac{\partial\phi}{\partial y}\Big)_x=N(x,\ y)=\cos x+x\cos y-y \end{cases}$ > > 將上式偏積分後可得 > > $\begin{cases} \phi(x,\ y)=\displaystyle\int^x(sin y-y\sin x)\ dx+g(y)=x\sin y+y\cos x+g(y)\\\\ \phi(x,\ y)=\displaystyle\int^y(\cos x+x\cos y-y)\ dy+h(x)=y\cos x+x\sin y-\dfrac{y^2}{2}+h(x) \end{cases}$$ > > 比較上式,取兩式之聯集,可得 $\phi(x,\ y)=x\sin y+y\cos x-\dfrac{y^2}{2}$ (即 $g(y)=-\dfrac{y^2}{2},\ h(x)=0$) > > 代入 $\phi(x,\ y)=c$ 中,可得 ODE 之通解為 $x\sin y+y\cos x-\dfrac{y^2}{2}=$ > >> 另解略過 ### Modified Exact Equations 修正型正合 (find $I(x,\ y)積分因子$) #### 定義 設一階 ODE $M(x,\ y)dx+N(x, y)dy=0$ 為非正合 若存在一函數 $I(x,\ y)$ 乘回上式後,能使原 ODE 變為正合 即 $I(x,\ y)M(x,\ y)dx+I(x,\ y)N(x, y)dy=d\phi(x,\ y)=0$ 則 $I(x,\ y)$ 稱為原 ODE 之積分因子 (integrating factor) #### 如何找 $I(x,\ y)$ 由定義知 $I(x,\ y)M(x,\ y)dx+I(x,\ y)N(x, y)dy=0$ 為正合 故滿足 $\dfrac{\partial}{\partial y}\Big[I(x,\ y)M(x,\ y)\Big]=\dfrac{\partial}{\partial x}\Big[I(x,\ y)N(x, y)\Big]$ 將上式展開可得: $I\dfrac{\partial M}{\partial y}+M\dfrac{\partial I}{\partial y}=I\dfrac{\partial N}{\partial x}+N\dfrac{\partial I}{\partial x}$ $\Rightarrow N(x,\ y)\dfrac{\partial I}{\partial x}-M(x,\ y)\dfrac{\partial I}{\partial y}=I\Big(\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}\Big)$ (以 $I$ 為函數之一階線性PDE) 想辦法做移項(分離變數法) if $I=I(x,\ y)$,上式無法做移項,則無解(trivial) , but if $I=I(x)$ only, $I=I(y)$ only,則上式可簡化成 $$\begin{cases} I=I(x):\ N\dfrac{d I}{d x}=I\Big(\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}\Big) -\text{\textcircled 1}\\ or\\ I=I(y):\ -M\dfrac{d I}{d y}=I\Big(\dfrac{\partial M}{\partial y}-\dfrac{\partial N}{\partial x}\Big)-\text{\textcircled 2} \end{cases}$$ if $I=I(x)$ 由 $\text{\textcircled 1}\Rightarrow\underbrace{\dfrac{dI}{I}}_{\because\text{ x only}}=\underbrace{\Big(\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{N}\Big)}_{\therefore\ f(x)}\ dx$, $I(x)=\exp\big(\displaystyle\int f(x)\ dx\big)$ if $I=I(y)$ 由 $\text{\textcircled 2}\Rightarrow\underbrace{\dfrac{dI}{I}}_{\because\text{ y only}}=\underbrace{\Big(\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{-M}\Big)}_{\therefore\ f(x)}\ dy$, $I(y)=\exp\big(\displaystyle\int f(y)\ dy\big)$ #### 結論 $A_n$ ODE $M(x,\ y)dx+N(x, y)dy=0$ 為非正合 but 存在 $I(x,\ y)$ 使得 $I(x,\ y)M(x,\ y)dx+I(x,\ y)N(x, y)dy=0$ 為正合 check: |檢查條件|積分因子| |:---:|:---:| |$\text{if }\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{N} = f(x)\text{ only}$|$I(x)=\exp\big(\displaystyle\int f(x)\ dx\big)$| |$\text{if }\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{-M} = f(y)\text{ only}$|$I(y)=\exp\big(\displaystyle\int f(y)\ dy\big)$ #### 解題方法 ##### 第一步 若 ODE $M(x,\ y)dx+N(x, y)dy=0$ 為非正合 $\Big(\dfrac{\partial M}{\partial y}\ne\dfrac{\partial N}{\partial x}\Big)$ $\text{check if }\begin{cases} \dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{N} = f(x)\text{ only}\\\\ \dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{-M} = f(y)\text{ only} \end{cases}\xrightarrow{\text{then\ \ }}\begin{cases} I(x)=\exp\big(\displaystyle\int f(x)\ dx\big)\\\\ I(y)=\exp\big(\displaystyle\int f(y)\ dy\big) \end{cases} $ 只會有一種成立,如果兩個都沒成立,就要另找方法 ##### 第二步 將 $I$ 乘回原 ODE $\Rightarrow I(x,\ y)M(x,\ y)dx+I(x,\ y)N(x, y)dy=0$ 為正合 則另 ODE 之解為 $\phi(x,\ y)=c$ ,且 $\phi$ 滿足$$\begin{cases} \Big(\dfrac{\partial\phi}{\partial x}\Big)_y=I(x,\ y)M(x,\ y)\\\\ \Big(\dfrac{\partial\phi}{\partial y}\Big)_x=I(x,\ y)N(x, y) \end{cases}\Rightarrow\begin{cases} \phi(x,\ y)=\displaystyle\int^xI(x,\ y)M(x,\ y)\ dx+g(y)\\\\ \phi(x,\ y)=\displaystyle\int^yI(x,\ y)N(x,\ y)\ dy+h(x) \end{cases}$$ 比較上兩式之聯集即可求得 $\phi(x,\ y)$ > Example > > Find $6xy\ dx+(4y+9x^2)dy=0$ > > 另 $\begin{cases} M(x,\ y)=6xy\\\\ N(x,\ y)=4y+9x^2 \end{cases}\Rightarrow{\text{判斷是否為正合}}\begin{cases} \dfrac{\partial M}{\partial y}=6x\\\\ \dfrac{\partial N}{\partial x}=18x \end{cases}\Rightarrow\dfrac{\partial M}{\partial y}\ne\dfrac{\partial N}{\partial x}$ > > 故原 ODE 為非正合,then 檢查是否存在積分因子 $I$ 能使原 ODE 變為正合 > > $\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{-M}=\dfrac{-12x}{-6xy}=\dfrac{2}{y}=f(y)\text{ only}$ > > 故存在積分因子 $I(y)=\displaystyle\int^y\Big(f(y)\ dy\Big)=\exp\Big[\displaystyle\int\dfrac{2}{y}dy\Big]=\exp\Big[\ln y^2\Big]=y^2$ > > 將 $I(y)$ 乘回原 ODE,可得 $6xy^3\ dx+(4y^3+9x^2y^2)\ dy=0$ 為正合 equation > > 故令 ODE 的解 $\phi(x, y)=c$,且 $\phi(x,\ y)$ 滿足 $$\begin{cases} \Big(\dfrac{\partial\phi}{\partial x}\Big)_y=I(x,\ y)M(x,\ y)=6xy^3\\\\ \Big(\dfrac{\partial\phi}{\partial y}\Big)_x=I(x,\ y)N(x, y)=4y^2+9x^2y^2 \end{cases}$$ > 將上式作偏積分可得 $\begin{cases} \phi(x,\ y)=\displaystyle\int^x6xy^3\ dx=3x^2y^3+g(y)\\\\ \phi(x,\ y)=\displaystyle\int^y(4y^3+9x^2y^2)\ dy=y^4+3x^2y^3+h(x) \end{cases}$ > > 比較上兩式可得 $\phi(x,\ y)=3x^2y^3+y^4$ (即 $g(y)=y^4$, $h(x)=0$ > 代入 $\phi(x,\ y)=c$,可得 ODE 之通解為 $3x^2y^3+y^4=c$ ### 線性行微分方程式[^9] (Linear Differential Equation) [^9]: 即修正要正合 #### 定義 A list-order ODE: $y'(x)+P(x)y=Q(x)$ * when $Q(x)=0$,it is called `homogeneous`、齊性方程式 * when $Q(x)\ne0$,it is called `non-homogeneous`、非齊性方程式 $\Rightarrow \dfrac{dy}{dx}+P(x)y=Q(x)$ $\Rightarrow dy+\big[P(x)y-Q(x)\big]dx=0$ $\Rightarrow \underbrace{1}_Ndy+\big[\underbrace{P(x)y-Q(x)}_M\big]dx=0$ $\Rightarrow{\text{判斷是否為正合}}$ 令 $\begin{cases} M(x,\ y)=P(x)y-Q(x)\\ N(x,\ y)=1 \end{cases}$ 則 $\begin{cases} \dfrac{\partial M}{\partial y}=\dfrac{\partial }{\partial y}\big[P(x)y-Q(x)\big]=p(x) \\\\ \dfrac{\partial N}{\partial x}=\dfrac{\partial (1)}{\partial x}=0 \end{cases}\Rightarrow\dfrac{\partial M}{\partial y}\ne\dfrac{\partial N}{\partial x}$, non-exact , then check if an integration factor exists, 將原本之非正合 ODE 轉為正合 ODE We observe $\dfrac{\tfrac{\partial M}{\partial y}-\tfrac{\partial N}{\partial x}}{N}=p(x)$ only, 故 ODE 存在積分因子 $I(x)=\exp\Big[\displaystyle\int p(x)\ dx\Big]$ 則原 ODE 可化成 $I(x)y'(x)+I(x)P(x)y=I(x)Q(x)$ 為正合[^9] [^9]: 如果將 $I$ 乘回改完後 ODE:$I\ dy+\Big[IPy-IQ\Big]=0$ 為正合,求解較複雜 $\Rightarrow (Iy)'=IQ$ > 證明 > $(Iy)'=I'y+y'I$ > $\because I=\exp\Big(\displaystyle\int P(x)\ dx\Big)$ > $I'=PI$ > $(Iy)'=PIy+y'I$ 兩邊積分 $\Rightarrow Iy=IQ\ dx+c$ > Example > Find $y'+y \tan x=\sin2x$, $y(0)=1$[^10] > $\begin{cases} > P(x)= \tan x \\ > Q(x)=\sin2x > \end{cases}$ > > $\therefore$ 1st-order, linear ODE > 存在積分因子 $I=\exp\Big[\displaystyle\int P(x)\ dx\Big]$ > > $=\exp\Big[\displaystyle\int \tan x\ dx\Big]$ > > $=\exp\Big[\displaystyle\int \dfrac{\sin x}{\cos x}\ dx\Big]$ > > $=\exp\Big[\displaystyle\int \dfrac{-d(\cos x)}{\cos x}\Big]=\exp\Big[-\ln \cos x\Big]=\dfrac{1}{\cos x}$ > > $(Iy)'=IQ$ > > $\Rightarrow Iy=\displaystyle\int IQ\ dx=\displaystyle\int \dfrac{1}{\cos x}\sin 2x\ dx$ > > $\displaystyle\int \dfrac{2\sin x\cos x}{\cos x}\ dx=\displaystyle\int 2\sin x\ dx=-2\cos x+c$ > $\therefore y=-2\cos^2 x+c\cos x$ (general solution) > > $\because y(0)=1$ 代入上式 $\Rightarrow c=3$ (general solution) 故 ODE 之解為 $y=-2\cos^2x+3\cos x$ (particular solution 特解) [^10]: Initial-value Problem (IVP) ### Bermoullis' Equation[^11] #### 定義 $y'+P(x)y=Q(x)y^n,\ n\ne 1$, 1st-order non-linear, ODE [^11]: 工程上 (e.g. 流體力學) 常見之微分方程式 #### 如何解 (non-linear $\rightarrow$ linear) $y'+P(x)y=Q(x)y^n$ $\Rightarrow y^{-n}y'+P(x)y^{1-n}=Q(x)$ ($\Rightarrow{改成}y'+Py=Q$) 變數變換法,令 $u=y^{1-n}$,以 $u$ 取代 $y$ 的角色,為了將 ODE 變為 Linear 代入原式可得 $\dfrac{du}{dx}+(1-n)P(x)u=(1-n)Q(x)$ (u 之 1st-order linear ODE) 令積分因子 $I=\exp\Big[\displaystyle\int(1-n)P(x)\ dx\Big]$ $\Rightarrow Iu=\displaystyle\int I(1-n)Q(x)\ dx+c$,即可求解 > Example > > Find $xy'+2y=xy^3$ > > 原式可改為 $y'+\dfrac{2}{x}y=y^2$ (Bernonllis equation $y'+P(x)y=Q(x)y^n$ > > $\Rightarrow y^{-3}y'+\dfrac{2}{x}y^{-2}=1$ (希望可改成 $y'P(x)y=Q(x)$) > > 令 $u=y^{-2} (為了將 ODE 轉為 linear)$ > $\Rightarrow u'=-2y^{-3}y'$ > 代入原式可得:$-\dfrac{u'}{2}+\dfrac{2}{x}u=1$ > $u'-\dfrac{4}{x}u=-2$ (u 之 1st-order linear ODE) > $\begin{cases} P(x)=-\dfrac{4}{x}\\ Q(x)=-2 \end{cases}$ > 積分因子 $I=\exp\Big[\displaystyle\int P(x)dx\Big]=\exp\Big[\displaystyle\int-\dfrac{4}{x}dx\Big]=\dfrac{1}{x^4}$ > > $Iu=\displaystyle\int IQ(x)dx=\displaystyle\int\dfrac{1}{x^4}(-2)dx=\dfrac{2}{3}\dfrac{1}{x^3}+c$ > > 即 $u=\dfrac{2}{3}x+cx^4=y^{-2}$ (general solution)