# Calculus ###### tags: `MyNTUST` :::info TODO: - 上 LaTeX ::: [toc] # 第二次期中考 > 範圍: > 2-5 ~ 3-7 (2-8、3-4 不考) 2-5 The Chain Rule --- > 連鎖~~綠~~律 > 使出:無限綠帽之術 [name=calee] **必備條件** - $f(x)$ 和 $g(x)$ 都可微 - $f(g(x))$ 成立 $F(x) = f(g(x))$ $F'(x)=f'(g(x)) \times g'(x)$ > 注意 $f'()$ 裡面的 $g(x)$ **沒有** 微分 > 高中老師教的口訣:外微乘內微 另一種寫法: $\frac {dy} {dx} = \frac {dy}{du}\frac{du}{dx}$ ~~分子分母對消~~ **栗子** $y = sin(x^2)$,求 $y'$: - 設 u = x^2 - y = sin(x^2) = sin(u) - dy/du = (sin(u))' = cos(u) - du/dx = (x^2)' = 2x - dy/dx = dy/du * du/dx = cos(u)*2x = cos(x^2) * 2x 2-6 Implicit Differentiation --- > 隱含微分(? 2-7 Related Rates --- > ~~相關係數~~ 休息一下,接下來是第三章 3-1 Maximum and Minimum Values --- > 極大值 & 極小值 > 歐派越大越好,年齡越小越好 [name=calee] 3-2 The Mean Value Theorem --- > 均值定理 > 我上次小考不會寫這題 QAQ [name=calee] 條件: - f(x) 在 [a,b] 連續 - f(x) 在 (a,b) 可微 $f'(c) = \frac{f(b)-f(a)}{b-a},a<c<b$ 3-3 Derivatives and the Shapes of Graphs --- > 微分及其~~徒刑~~圖形 3-5 Optimization Problem --- > U化問題 3-6 Newton's Method --- > 牛頓法 > 用來找某個點的 x $x_{n+1} = x_n - \dfrac{f(x_n)}{f'(x_n)}$ 3-7 Antiderivatives --- > 反導函數 --- 聊天室的部分 > 嗨嗨 嗨嗨 > [name=calee] > [name=None] > 可以簽個到ww > 太難了QQ > 明天有機會再繼續補
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up