# Voronoi Diagrams - Post Office Problem 計算幾何 Min-Te Sun, Ph.D ## Service Area of Each Post Office ### Assumptions 1. 每個 site (提供服務的點),提供服務的cost都相同 2. cost of transportation 與距離成正比 3. 假設空間中無障礙物 ### Voronoi Assignment Model 1. Voronoi assignment model -> every point is assigned to the nearest site(提供服務的點) 2. Voronoi diagram -> 將一個空間依據Voronoi assignment model切割成多個subdivision ### Definition of Voronoi Diagram * P 集合是將平面細分為 n 個 cell, => P = {$p_1$ , $p_2$ ,..., $p_n$ } 是 n 個不同site * q 為一個點,且在P集合中與 $p_i$ 距離最短 => dist(q, $p_i$) < dist(q, $p_j$) for each $p_j$ ∈ P with j ≠ i ![V - 1](https://hackmd.io/_uploads/H1-NuoKjA.jpg) * 假設cell 中包含site X,而相對於其他site,與site X有最短距離的點集合,即為cell的點集合 ### The Case of Two Sites and Its Generalization ![V - 2.1](https://hackmd.io/_uploads/SJPjkhtjA.jpg) * 當點在$p_1$和$p_2$的垂直平分線上,此時該點到$p_1$和$p_2$的距離相同,因此得到以下結論: * 當一個點在A區域時,其距離會較$p_1$近 * 當一個點在B區域時,其距離會較$p_2$近 * 所以有n個site時,可透過將每個site用垂直平分線分成兩個集合後,並找出他們的交集,即可得到第i個cell的集合 V($p_i$) => ![V - 3](https://hackmd.io/_uploads/ryEQM2KoR.jpg) ### Computing Voronoi Diagram Fortune’s algorithm – Ω(nlogn) – This algorithm is optimal since sorting n real numbers is reducible to the problem of computing Voronoi diagram – A “variation” of plane sweep