# PID Controller $$ \lambda(t)\ =\ K_pe(t)\ +\ K_i\int_{0}^{\tau}\ e(\tau)\ d\tau\ +\ K_d\dfrac{d}{dt}e(t) $$ $$ e(t)\ =\ Q^* - Q(t) $$ $$ \dfrac{d}{dt}e(t)\ =\ -(\lambda(t) - \gamma) $$ $$ \lambda(t)\ =\ K_p(Q^* - Q(t))\ +\ K_i\int_{0}^{\tau}\ (Q^* - Q(\tau))\ d\tau\ -\ K_d(\lambda(t) - \gamma) $$ $$ \dfrac{d}{dt}\lambda(t)\ =\ -K_p(\lambda(t) - \gamma)\ +\ K_i(Q^* - Q(t))\ -\ K_d\dfrac{d}{dt}\lambda(t) $$ $$ (1\ +\ K_d)\dfrac{d}{dt}\lambda(t)\ =\ -K_p(\lambda(t) - \gamma)\ +\ K_i(Q^* - Q(t)) $$ $$ \dfrac{d}{dt}\lambda(t)\ =\ \dfrac{-K_p(\lambda(t) - \gamma)\ +\ K_i(Q^* - Q(t))}{(1\ +\ K_d)} $$ $$ \lambda(t + 1)\ =\ \lambda(t)\ +\ \dfrac{-K_p(\lambda(t) - \gamma)\ +\ K_i(Q^* - Q(t))}{(1\ +\ K_d)} $$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up