# Question  $$\int \sqrt{\frac{\mathrm{a}+\mathrm{c}x}{x}} \mathrm{d}x$$ # Solution $Let \, x = \frac{a}{c} \cdot \tan^2{\theta}$ $\Rightarrow \mathrm{d}x= \frac{2a}{c} \cdot \tan\theta \cdot \sec^2\theta \, \mathrm{d}\theta$ $a+cx = a+\not{c} \cdot \frac{a}{\not c} \tan^2{\theta} = a+a\tan^2\theta = a(1+\tan^2\theta) = a \cdot \sec^2\theta$ $\int \sqrt{\frac{\mathrm{a}+\mathrm{c}x}{x}} \mathrm{d}x = \int \sqrt{\frac{a \cdot \sec^2\theta}{\frac{a}{c} \cdot \tan^2{\theta}}}\cdot \frac{2a}{c} \cdot \tan\theta \cdot \sec^2\theta \, \mathrm{d}\theta =2 \cdot a \cdot c^{-\frac{1}{2}} \cdot \int \sec^3\theta \, \mathrm{d}\theta$ $\int \sec^3\theta \, \mathrm{d}\theta = \frac{1}{2}[\sec \theta \tan \theta + \ln \vert \tan \theta + \sec \theta \vert]$ $\Rightarrow \int \sqrt{\frac{\mathrm{a}+\mathrm{c}x}{x}} \mathrm{d}x = 2 \cdot a \cdot c^{-\frac{1}{2}} \cdot\frac{1}{2}[\sec \theta \tan \theta + \ln \vert \tan \theta + \sec \theta \vert ]$ $\tan \theta = \sqrt{\frac{cx}{a}},\, \sec \theta = \sqrt{\frac{a+cx}{a}}$ $\Rightarrow 2 \cdot a \cdot c^{-\frac{1}{2}} \cdot\frac{1}{2}[\sec \theta \tan \theta + \ln \vert \tan \theta + \sec \theta \vert ] = \not 2 \cdot a \cdot c^{-\frac{1}{2}} \cdot \frac{1}{\not 2}[\sqrt{\frac{a+cx}{a}} \cdot \sqrt{\frac{cx}{a}} + \ln \vert \sqrt{\frac{cx}{a}} + \sqrt{\frac{a+cx}{a}} \vert ]$ --- $$\mathrm{Ans: } \, a \cdot c^{-\frac{1}{2}} \cdot[\sqrt{\frac{a+cx}{a}} \cdot \sqrt{\frac{cx}{a}} + \ln \vert \sqrt{\frac{cx}{a}} + \sqrt{\frac{a+cx}{a}} \vert ] + C$$
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up