# Keras 神經網路的開發步驟 1. 定義訓練資料: Input Tensor, Target Tensor 2. [定義網路層 (Layers)](https://hackmd.io/1W0c-6JPSP2YUyh4gK0jVQ) 3. [選擇損失函數、優化器](https://hackmd.io/YP19VRsnTGyXMjWniuQyJA) 4. 呼叫模型的 `fit()` # 定義模型的方法 - 序列式(Sequential) ```python= network = models.Sequential() network.add(layers.Dense(32, activation='relu', input_shape=(784,))) network.add(layers.Dense(10, activation='softmax')) ``` - 函數式(Functional) ```python= input_tensor = layers.Input(shape=(784,)) x = layers.Dense(10, activation='relu')(input_tensor) output_tensor = layers.Dense(10, activation=)(x) model = models.Model(inputs=input_tensor, output=output_tensor) ``` # 編譯模型的方法 ```python= from keras import optimizers model.compile( optimizer=optimizers.RMSprop(lr=0.001)), loss='mse', metrics=['accuracy'] ) ``` # 模型學習的方法 ```python= model.fit(input_tensor, target_tensor, batch_size=128, epochs=10) ``` ###### tags: `Keras` `Deep Learning`