--- tags: Linear Algebra --- ## Vector Space It's **my lecture notes**, [**1.2 Vector Space**](https://www.youtube.com/watch?v=FjN_sxRBmQg&list=PLj6E8qlqmkFtjxknKFtdxc1_SxNBXgpbo&index=2), [Linear Algebra 1, NYCU OCW](https://ocw.nycu.edu.tw/?course_page=all-course%2Fcollege-of-science%2Fam%2F%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8%E4%B8%80-linear-algebra-i-%E6%87%89%E7%94%A8%E6%95%B8%E5%AD%B8%E7%B3%BB-%E8%8E%8A%E9%87%8D%E8%80%81%E5%B8%AB) ## Facebook 嘅討論 - [2023-11-28 02:50](https://www.facebook.com/groups/978651839991898/posts/1053216632535418/) - [2023-11-29 04:09](https://www.facebook.com/groups/978651839991898/posts/1053738029149945/) - [2023-11-29 23:29](https://www.facebook.com/groups/978651839991898/posts/1054121652444916/) ## Definition of Vector Spaces A vector space $V$ over a field $F$ consists of a set on which two operations, **addition** and **scalar multiplication**, are satisfied with the following axioms (VS-1) $x + y \in V$ whenever $x,\ y \in V$ (VS 0) $\alpha x \in V$ whenever $\alpha \in F\ and\ x \in V$ (VS 1) $x + y = y + x\;\; \forall\ x,\ y \in V$ (commutative) (VS 2) $(x + y) + z = x + (y + z)\;\; \forall\ x,\ y,\ z \in V$ (associative) (VS 3) $\exists\ \mathbf{0} \in V$ such that $x + \mathbf{0} = x,\;\: x \in V$ (VS 4) For each $x \in V, \; \exists\:y\in V$ such that $x + y = \mathbf{0}$ (VS 5) For each $x \in V$, $\mathbf{1} \cdot x=x\;, \mathbf{1} \in F$ (VS 6) $(ab)x = a(bx)\;\; \forall\; a,\ b \in F\ and\ x \in V$ (distributive) (VS 7) $a(x + y) = ax + ay\;\; \forall\; a,\ b \in F\ and\ x \in V$ (distributive) (VS 8) $(a + b)x = ax + bx\;\; \forall\; a,\ b \in F\ and\ x \in V$ (distributive) ### Examples 01 Can a vector space be constructed using the following definition? $S = \{(a_1, a_2): a_1, a_2 \in R\},\ F = R$ Addition: $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1,\ a_2 - b_2)$ Scalar Multiplication: $c(a_1, a_2) = (ca_1, ca_2)$ ##### Proof: Let $x = (a_1,\ a_2),\; y = (b_1,\ b_2)$ $x + y = (a_1,\ a_2) + (b_1,\ b_2) = (a_1 + b_1,\ a_2 - b_2)$ $y + x = (b_1,\ b_2) + (a_1,\ a_2) = (b_1 + a_1,\ b_2 - a_2)$ $\implies$ $(a_1,\ a_2) + (b_1,\ b_2) \neq (b_1,\ b_2) + (a_1,\ a_2)$ $\implies$ $x + y \neq y + x$ The definition can't satisfy the conditions (VS 1) $x + y = y + x\;\; \forall\ x,\ y \in V$, so it can't be constructed. ## Definition of Field A field $F$ is a set on which two operations $+$ and $\cdot$ are defined so that, for each pair of elements $x, y \in F$ , there are unique elements $x + y$ and $x \cdot y \in F$ for which the following axioms hold for all elements $a, b, c \in F$. 1. a + b = b + a 2. (a + b) + c = a + (b + c) 3. There exist distinct element $\mathbf{0} \in F$ and $1 \in F$ such that $\mathbf{0} + a = a$ and $\mathbf{1} \cdot a = a$ 4. For each element $a \in F$ and each nonzero element $b \in F$ , there exist elements $c \in F$ and $d \in F$ such that $a + c = \mathbf{0}$ and $b \cdot d = \mathbf{1}$ 5. $a \cdot (b + c) = a \cdot b + a \cdot c$ ### Example 01 $\mathbb{C}$, $\mathbb{R}$ and $\mathbb{Q}$ are the common fields. ### Example 02 Is $V$ a vector space over the complex number $\mathbb{C}$? $$ V = \{\begin{bmatrix}a_{1} \\a_{2} \\\vdots \\a_{n}\end{bmatrix}: a_i \in R,\; i = 1, 2, \cdots, ..., n \},\: F = \mathbb{C} $$ ##### Proof: let $z = i,\ z \in \mathbb{C} = F$, $v_1 = \begin{bmatrix}a_{1} \\a_{2} \\\vdots \\a_{n}\end{bmatrix} \in V, a_i \in R$ $z \cdot v_1 \implies a_i \in \mathbb{C}$ It doesn't satisfy the axiom (VS 0) $\alpha x \in V$ whenever $\alpha \in F\ and\ x \in V$, so it can't be constructed. ## Theorem 1.1 If $x,\ y,\ z \in V$, a Vector Space $V$ such that $x + z = y + z\,$ then $x = y$. #### Corollary 1 The element $\mathbf{0}$ is **unique** in the axioms (VS 3) of the definition of the vector space. (VS 3) $\exists\ \mathbf{0} \in V$ such that $x + \mathbf{0} = x,\;\: x \in V$ #### Corollary 2 The vector $y$ is **unique** in the axioms (VS 4) of the definition of the vector space. (VS 4) For each $x \in V, \; \exists\:y\in V$ such that $x + y = \mathbf{0}$ ## Theorem 1.2 $V$ is a vector space, then 1. $0 \cdot x = \mathbf{0}$, $0 \in F$, $x \in V$, $\mathbf{0} \in V$ 2. $(-a)x = -(ax) = a(-x)$, $a \in F$, $x \in V$ 3. $a \cdot \mathbf{0} = \mathbf{0}$, $a \in F$,$\mathbf{0} \in V$ ## Exercises in [Linear Algebra](https://www.amazon.com/Linear-Algebra-4th-Stephen-Friedberg/dp/0130084514)