# Linear Systems Theory ###### tags: `Linear System Theory` `604` ###### instructor: Professor R. Janaswamy ###### ref.: [Differential Equations](https://ece.umass.edu/sites/default/files/Ordinary_Differential_Equations%5B296%5D_0.pdf) ###### ref2.: [Laplace Transforms](https://ece.umass.edu/sites/default/files/LaplaceTransforms%5B297%5D.pdf) 1/26 === ### Reviewing basic linear algebra ### Topic 1:How to determind two vectors are linearly independent? Given vector $\vec{X}$ and $\vec{Y}$, then set equation $\alpha$$\vec{X}$+$\beta$$\vec{Y}$ = 0. If $\alpha$ and $\beta$ equal to zero, then we say vector $\vec{X}$ and $\vec{Y}$ are linearly independent. Given $\vec{X_1}$, $\vec{X_2}$, ... $\vec{X_n}$ (n $\in \mathbb{R}$).And set the equation to: $\alpha_1$$\vec{X_1}$+ $\alpha_2\vec{X_2}$ + ... $\alpha_n\vec{X_n}$ =0. If every n that make $\alpha_n$ = 0, then we say every $\vec{X_n}$ are linearly independent. ### Topic 2: norm $|| x ||$ > 0, then any constant a(which is non-zero) makes $||\alpha x||$ = $||\alpha|| \times ||x||$ Also, $||x + y|| \leq ||x|| + ||y||$ #### euclidean norm Given a column vector $\vec{X}$, $||x||$ = $\sqrt{\vec{X^T}\vec{X}}$ #### Inner product between two vectors X, Y inner product defined as $X^TY$ = $\sum_{i=1}^{n}X_iY_i$ $||X^TY|| \leq ||X||||Y||$ known as [Cauchy Schwarz inequality.](https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality) #### norm of an $n \times n$ matrix $||A|| = max \{ \dfrac{||Ax||}{||x||} \}$ ,which A is a `nxn` vector, and $\vec{x}$ is a `nx1` column vector $A_{nn} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$ **[Ref. example-10 on page9&10](https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook30/30_4_mtrx_norms.pdf)** $max|a_{ij}| \leq |A| \leq n \times max|a_{ij}|$ # 1/28 ## Eigenvalues and Eigenvectors ### right eigenvector `p` given A as a `nxn` matrix,the A*p = $\lambda$* p(which p called as right eigen vector`n*1, and it can be complex`, and $\lambda$ called as eigenvalue ) (A - $\lambda$*I)p = 0, which `I` is called as Identity matrix(nxn) Definition: eigenvalue and eigenvectors appear as complex conjugate($\vec{p}$ is complex conjugate of p) if A is non-singular(which its det(A)!=0), the eigenvectors will be linearly independent; n number of those`(?)` M = [ $\vec{p}_1 \vec{p}_2 ... \vec{p}_n$ ], M is non-singular, and all $\vec{p}_n$ are independent. $M^{-1}$ exist **$M^{-1}AM = dig(\lambda_1 \ \lambda_2 ... \lambda_n)$, if the eigenvale are distinct** Also, it's called as **similarity Transformation** Given $A_{n\times n}$, and an invertible $p_{n \times n}$ If A is singular, we cannot always expect n linearly independent eigenvector. ### Left Eigenvectors `q` Given `q` is a `1*n` matrix(which is called left eigenvector) and A is a `n*n` martix, then we have: q*A = $\lambda$*q -> q(A-$\lambda I$ ) = 0 ***Eigenvalue will be the same(eighter doing right eigenvector or left eigenvector methods )*** det(A-$\lambda I$) = 0, will get a polynomial of degree `n` in $\lambda$. **Figure of 1/28_1: characteristic polynomial.** ### $a_{n}A^{n}+a_{n-1}A^{n-1} + \cdots + a_{1}A + a_{0}I = 0$ [Cayley-Hamilton theorm](https://en.wikipedia.org/wiki/Cayley%E2%80%93Hamilton_theorem): Every matrix satisifes its own characteristic polynormial. $A^{k} = AA ... AA$, each A is a $n \times n$ matrix example: $a_3A^{3}+A_2A^{2}+a_1A+A_0I = 0$ **Rievew the def. of eigenvalue and eigenvector** $g_i \cdot p_j$ = 0 (inner product), which i$\neq$j. With this property, we could say: A$p_j$ = $\lambda_jp_j$ key: eigenvalue are unique. However, eigenvector is NOT unique(can be scaled by constant `k`, which would still fit) # 1/31 $Ax=y$ which y is called as collection of all $y$ is known as range space. 1. rank of A defined as dimention of the range space. Or number of linearly independent vectors in the range space.(noted as =: $r > 0$). Also, equals to number of independent columns(rows) of A. 2. null space defined as $Ax=0$, collection of all x ...(TBD) 3. $r+v = n$, which imply $r \leq n$ ### Solvability of $Ax=b$(given $b \neq 0$, and outside to the null space) Equation1. has a solution if only if $b^{T}X = 0$, for all X in the null space of $A$. 4. Given $A_{m \times n}$ and $B_{n \times p}$, $rank(A) + rank(B) - n \leq min \{rank(A), rank(B)\}$ 5. $||A_{n \times n}|| = max \{ \frac{||AX||}{||X||} \}$, norm of A **review definition of $Trace(A)$ and $dot(A)$** # 2/2 ### finishing the example from last lecture. $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix} = A^T$ , which $det(A)=0$ and left eigenvector equals to right eigenvector($q = p^T$) $\vec{e_1} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \end{bmatrix}$ $\vec{e_2} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ \end{bmatrix}$ $\vec{e_3} = \begin{bmatrix} 1 \\ 0 \\ -2 \\ \end{bmatrix}$ ### key:$\vec{e_1}, \vec{e_2}$ come from $\lambda = 0$, and $\vec{e_3}$ comes from $\lambda = 5$ Then $\vec{e_1}, \vec{e_2}$, and $\vec{e_3}$ form a basis, also $\vec{e_1} \perp \vec{e_2} \perp \vec{e_3}$ ## Note: default basis $\vec{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \end{bmatrix}$ $\vec{b_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \end{bmatrix}$ $\vec{b_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \end{bmatrix}$, given $X= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{b_1} + x_2 \vec{b_2} + x_3 \vec{b_3}$ $P = \begin{bmatrix} \vec{e_1} \ \vec{e_2} \ \vec{e_3} \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$ $P^{-1} = \frac{1}{5} \begin{bmatrix} 0 & 5 & 0\\ 2 & 0 & 1\\ 1 & 0 & -2 \end{bmatrix}$ $D=P^{-1}AP = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} \lambda1 & 0 & 0 \\ 0 & \lambda2 & 0 \\ 0 & 0 & \lambda3 \end{bmatrix}$ $Ax = b$, by change of variable($z=p^{-1}x$) = $APz = b$ = $P^{-1}APz = P^{-1}b$ = $Dz = P^{-1}b = c$, which c is a $n \times 1$ matrix ( $\because D = P^{-1}AP$ ) **The key here is to decompose the matrix from a `nxn` matrix into `nx1` matrix, which would make the calculation easier** ### Norm of A By definition: $||A|| = \sqrt{max \{ eigenvalue \ of (A^TA) \}} = max \{ \frac{||AX||}{||X||} \}$ eigenvalue of $(A^2) = [eigenvalue of (A)]^2 = [0, 0, 25]$ Thus, $||A|| = 5$ characteristic $\lambda^3 - 5\lambda^2 = 0$ Cayley-Hamilton $A^3 - 5A^2 = 0$, which `0` means a $3 \times 3$ matrix here. $A^2 = \begin{bmatrix} 5 & 0 & -10 \\ 0 & 0 & 0 \\ -10 & 0 & 20 \end{bmatrix}$ $A^3 = \begin{bmatrix} 25 & 0 &-50 \\ 0 & 0 & 0 \\ -50 & 0 & 100 \end{bmatrix}$ Thus, $A^3 = 5A^2$ $A^4 = 5A^3 = 25A^2$ $A^5 = AA^4 = 25A^3 = 125A^2 \cdots A^k = 5^{k-2}A^2, k \geq 2$ # 2/7 ## Example 4. given the following unknow function: $\frac{d^{n}}{dt^n} + \sum_{p= 1}^{n} a_{(n-p)} \frac{d^{n-p}}{dt^{n-p}} y(t) = b_0(t)u(t)$, which $t \in [ t_0, +\infty \}$ Define state variable $x_k(t) = \frac{d^{k-1}}{dt^{k-1}}$ $x_1(t) = y(t)$ $x_2(t) = dy/dt$ $\vdots$ $x_n(t) = d^{n-1} / dt^{n-1} y(t)$ $\dot{x_{n}} = - \sum_{p=1}^{n}a_{n-p}x+ b_0(t)u(t)$ $\dot{X} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 &\cdots & 0 \\ \cdot \\ 0 & \cdots & \cdots & 0 & 1\\ -a_0 & -a_1 & \cdots & \cdots & -a_n-1 \end{bmatrix} X+ \begin{bmatrix} 0 \\ \cdots \\ 0 \\ b_0(t) \end{bmatrix}U(t)$, which first matrix called $A(t)$, second matrix called $B(t)$ **y's matrix is below. $\begin{bmatrix} x_1(t_0) \\ x_2(t_0) \\ \vdots \\ x_n(t_0) \\ \end{bmatrix} = \begin{bmatrix} y(t_0) \\ \frac{dy}{dt}(t_0) \\ \vdots \\ \frac{d^{n-1}y}{dt^{n-1}}(t_0) \\ \end{bmatrix}$ ### Converting a non-linear equations and Linearization Given $\dot{X}(t) = f [ x(t); u(t); t ]$, which f is a nx1 matrix, x is a nx1 matrix, and u is a mx1 matrix $x(t_0) = x_0$ k_th term $\dot{X_k} = f[x_1, x_2 ... u_1 ... u_ m, t] , k = 1 ... n$ $x_k(t_0) = x_0k$ Say the solution is know for some inputs $\tilde{u_1}, \tilde{u_2}, \dots \tilde{u_m}$ (nominal inputs), and corresponding mutual condition $\tilde{x_{01}}, \tilde{u_{02}}, \dots \tilde{u_{0n}}$ (nominal initial conditions) ### Q. 1 How does the non-linear system behave **close** to the nominal solution? Let $u(t) = \tilde{u}(t) + u_\delta(t)$ $x(t_0) = \tilde{x_0} + x_{0\delta}$ Where we are making a assumption here: $x(t) = \tilde{x}(t) + x_\delta(t)$ $||u_{\delta}(t)|| \ll ||\tilde{u}(t)||$ $||x_{0\delta}|| \ll ||\tilde{x_0}||$ #### reminder: $\ll \ \approx \ \leq0.1$ Assumption: $x(t) = \tilde{x}(t) + x_{\delta}(t)$ $||x_{\delta}(t)|| \ll \tilde{x}(t), t \in (t_0, T)$ Eq1 = $\begin{cases} \dot{\tilde{x} }(t) + \dot{x_{\delta}}(t) = f( \tilde{x} + x_\delta, \tilde{u}+u_\delta; t) \\ \tilde{x_0} + x_{0\delta} = x_0 \\ \end{cases}$ Eq2 = $\begin{cases}\dot{\tilde{x_0}} = f(\tilde{x}; \tilde{u}; t) \\ \tilde{x}(t_0) = \tilde{x_0} \\ \end{cases}$ Eq1 - Eq2 => $\dot{X} = f(\tilde{X} + X_\delta; \tilde{u}+ u_\delta; t)-f(\tilde{X}; \tilde{u}; t)$ $x_\delta(t_0) = x_0 - \tilde{x}_0$ $f_k(\tilde{X} + X_\delta; \tilde{u}+ u_\delta; t)-f_k(\tilde{X}; \tilde{u}; t)$, which k = 1, 2 ... n. $= \frac{\partial{f_k}}{\partial{x_1}}|_{\tilde{x}}x_{\delta 1}+\frac{\partial{f_k}}{\partial{x_2}}|_{\tilde{x}}x_{\delta 2}+ \cdots + \frac{\partial{f_k}}{\partial{x_n}}|_{\tilde{x}}x_{\delta n}+ \frac{\partial{f_k}}{\partial{u_1}}|_{\tilde{u}}x_{\delta 1}+ \cdots + \frac{\partial{f_k}}{\partial{u_m}}|_{\tilde{u}}x_{\delta m} + h.o.t$ ### reminder: what's h.o.t? Finally, we have $\dot{x}_{\delta}$, which is a nx1 matrix => $\dot{x}_{\delta} = \begin{bmatrix} \frac{\partial{f_1}}{\partial{x_1}} & \frac{\partial{f_1}}{\partial{x_2}} & \cdots & \frac{\partial{f_1}}{\partial{x_n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial{f_n}}{\partial{x_1}} & \frac{\partial{f_n}}{\partial{x_2}} & \cdots & \frac{\partial{f_n}}{\partial{x_n}} \\ \end{bmatrix} x_{\delta} + \begin{bmatrix} \frac{\partial{f_1}}{\partial{u_1}} & \frac{\partial{f_1}}{\partial{u_2}} & \cdots & \frac{\partial{f_1}}{\partial{u_n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial{f_n}}{\partial{u_1}} & \frac{\partial{f_n}}{\partial{u_2}} & \cdots & \frac{\partial{f_n}}{\partial{u_m}} \\ \end{bmatrix}u_{\delta}$ #### **Reminder: $x_\delta$ is a nx1 matrix, second matrix is a nxm matrix, and $u_\delta$ is a mx1 matrix** #### Same thing in initial condition : $\dot{x_\delta} = matrix \times x_\delta + matrix \times u_\delta$, which matrix filled with partial div. Also, it's called as `Jacobiam matrix`. First part of equation is a linear system $A(t)$ 2/24 office hour: $\dot{x_1} = f_1(x_1, x_2)$; $x_1 = \tilde{x_1} + x_{\delta1}$ $\dot{x_2} = f_2(x_2, x_2)$; $x_2 = \tilde{x_2} + x_{\delta2}$ $\begin{bmatrix} f_1 \\ f_2 \\ \end{bmatrix} = f(\tilde{x_1}, \tilde{x_2}) + \frac{\partial{f}}{\partial{x_1}}|_{\tilde{x_1} \tilde{x_2}}x_{\delta 1} + \frac{\partial{f}}{\partial{x_2}}|_{\tilde{x_1} \tilde{x_2}}x_{\delta 2}$ 2/14 === $\vdots$ $\vdots$ $\vdots$ 2/16 === Linearizing the non-linear system could make the system more accurately. Outline --- * linear discrete system 1. summer ```mermaid flowchart LR input(("input1"))--" + "-->summer(summer) input_2(("input2"))--" - "-->summer summer-->output(("output")) ``` **input1 = $x_1(t)$; input2 = $x_2(t)$; output = $x_1(t) - x_2(t)$** 3. time-varying amplifiers ```mermaid flowchart LR input(("input"))-->amplifier(("#alpha;(t)")) amplifier-->output(("output")) ``` **intput = $x_1(t)$** **$\alpha(t)$ scalar can be +vector or -vector "** **output = $\alpha(t)x_1(t)$** 5. Integrator $\int_{t_0}^{t} \dot{x_1}d$ ```mermaid flowchart LR input(("input")) --> integrator(("integrator")) intput2(("InitialCondition")) --> integrator integrator --> output(("output")) ``` **intput = $\dot{x_1}(t)$, and InitialCondition = $x_1(t_0)$** **Output = $\int_{t_0}^{t} \dot{x_1}(t)d\sigma + x_1(t_0) = x_1(t)$** $t_0 = x_1(t) - x_1(t_0)$ Example --- Given $\frac{d^{2}y}{dt^2} + \alpha_1(t)\frac{dy}{dt}+\alpha_0(t)y(t) = b_0(t)u(t)$ Define: $\begin{cases}x_1(t) = y(t) \\ x_2(t) = \dot{y(t)} = \frac{dy}{dt}\end{cases} \Rightarrow \dot{x_1}(t) = x_2(t)$ $\dot{x_2}(t) = \frac{d^2y}{dt^2} = -a_1(t)x_2(t) -a_0(t)x_1(t) + b_0u(t)$ Thus, $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \\ \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \\ \end{bmatrix} u(t)$ **flow of the example system: $u(t)$ through a time-varying amplifier $b_0(t)$, and the output of amplifier will sent to a summer(+), with other 2 amplifier $\alpha_1(t)$(-) and $\alpha_0(t)$(-). After this `summer`, $\dot{x_2}$ will produced. .. so on and so on. Discrete Linear system, Chapter 3 --- Time variable k = 0, 1, 2 ... k state equation: $x(k+1) = A(k)x(k) + B(k)u(k)$, x would be a `nx1` matrix, A(k) would be a `nxn` matrix, X(k) would be a `nx1` matrix Output equation: $y(k) = c(k)x(k) + D(k)u(k)$ 1. Zero input linear system : $u(k) \equiv 0$; system driven by initial state conditions $x(l)$ 2. Zero state linear system : $x(l) \equiv 0$; system driven by initial state conditions $u(k)$.($x(l)$means that initial state at time $l$) Example: Zero-input discrete time linear system. Part(1) --- Given, $x(k+1) = A(k)x(k)$. What's $x(k)$? for $k \ge l$. Solution: $for \ k = l: x(l+1) = A(l)x(l)$ $for \ k = l+1: x(l+2) = A(l+1)x(l+1)$ What we get: --- $x(k) = [ A(k-1)A(k-2) \cdots A(l) ] x(l)$, which A(...) are `nxn` matrix, and $[...]$ is called as `Transition Matrix` $\Phi{(k;l)}$, `nxn` matrix. Properties of the Transition Matrix --- $\Phi{(l; l)} = I$, which I is a `nxn` identity matrix. $\Phi{(k+1; l)} = A(k)\Phi(k; l)$ With this properties, $x(k)$ can be re-writed as $x(k) = \Phi{(k; l)}x(l)$ Question: Is it possible to construct the transition matrix in a different? --- ``` Answer: Yes ``` We can construct a fundemental matrix $X(k)_{n \times n} = [x^{(1)}(k), x^{(2)(k)}, \cdots, x^{(n)}(k)]$, each `x(k)` is linearly indenpendent solution of `part(1)`. for n independent inital conditions. Thus, $\Phi{(k; l)} = X(k)X^{-1}(l)$ With this idea, we can avoid the multiple multiply 2/18 === Recalling from last lecture --- $x(k+1) = A(k)x(k) + B(k)u(k)$, which $B(k)u(k) = 0, if it's a zero input case$. ### $x(k) = \Phi{(k; l)}x(l)$: zero input solution with initial conditionspecificed at time `l`. Now, re-write the $x(k)$ --- $x(k) = \Phi{(k; 0)}x(0) + \sum_{l=0}^{k-1} \Phi{(k; l+1)} B(l)u(l) + \sum^{k-1}_{l=0}H(k;l)u(l)$, $\sum^{k-1}_{l=0}H(k;l)u(l)$ is a time-varying input response. Also, $x(k+1) = A(k)x(k)$ is called as homogeneous case, means no-input. Example: Homogeneous system --- $\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ \end{bmatrix} = \begin{bmatrix} 1 & k+1 \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} x_1(k) \\ x_2(k) \\ \end{bmatrix}$ Given, $\begin{bmatrix} 1 & k+1 \\ 0 & 1 \\ \end{bmatrix}$ = A(k) matrix. What's $\Phi{(k;l)}$? Sol: --- * $\Phi{(k; l)} = X(k)X^{-1}(l)$ * $\Phi{(k; l)} = A(k-1)A(k-2) \cdots A(l+1)A(l)$ $A(k-1)A(k-2) \cdots A(l+1)A(l) = \begin{bmatrix} 1 & k+1 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & k-1 \\ 0 & 1 \\ \end{bmatrix} \cdots \begin{bmatrix} 1 & l+2 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & l+1 \\ 0 & 1 \\ \end{bmatrix}$ $= \begin{bmatrix} 1 & k+1 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & k-1 \\ 0 & 1 \\ \end{bmatrix} \cdots \begin{bmatrix} 1 & l+3 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 2l+3 \\ 0 & 1 \\ \end{bmatrix}$ With $\begin{bmatrix} 1 & l+3 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 2l+3 \\ 0 & 1 \\ \end{bmatrix}$ forming the matrix $\begin{bmatrix} 1 & 3l+6 \\ 0 & 1 \\ \end{bmatrix}$. Also, $\begin{bmatrix} 1 & l+4 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 3l+6 \\ 0 & 1 \\ \end{bmatrix}$ forming the matrix $\begin{bmatrix} 1 & 4l+10 \\ 0 & 1 \\ \end{bmatrix}$ $l+1 \\ 2l+3 \\ $ ## Missing part Method-2 --- $x_1(k+1) = x_1(k)+(k+1)x_2(k)$ $x_2(k+1) = x_2(k)$ -> $x_2(k) = x_2(0)$ Thus, $x_1(k+1) = k_1(k) + (k+1)x_2(0)$ $x_1(1) = x_1(0)+x_2(0)$ $x_1(2) = x_1(1)+2x_2(0) = x_1(0)+3x_2(0)$ $\vdots$ $x_1(k) = x_1(0) + \frac{k(k+1)}{2}x_2(0)$ With this final function, we can write it in matrix term. $\begin{bmatrix} x_1(k) \\ x_2(k) \\ \end{bmatrix} = \begin{bmatrix} 1 & \frac{k(k+1)}{2} \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} x_1(0) \\ x_2(0) \\ \end{bmatrix}$ Choice-1 --- With $x_1(0)=1 \ and \ x_2(0)=0$, $x^{(1)}(k)=\begin{bmatrix} 1 \\ 0 \\ \end{bmatrix}$. Choice-2 --- With $x_1(0)=0 \ and \ x_2(0)=1$, $x^{(2)}(k)=\begin{bmatrix} \frac{k(k+1)}{2} \\ 1 \\ \end{bmatrix}$. Thus, $X(k) = \begin{bmatrix} 1 &\frac{k(k+1)}{2} \\ 0 & 1 \\ \end{bmatrix}$ ### Conclusion: Both way will get the same answer $\Phi{(k;l)} = X(k)X^{-1}(l)$ 2/22: === Example from textbook P.105, with reference *"DiscreteTimeExample.pdf"* --- > Assumption: > * Each individual marries only once. > * Each couple has exactly one son and one daughter. > * Number of males = number of females > $x_i(k)$ number of man in class $i$ in generation $k$ ### Transistion matrix: $\Phi{(k;l)} = A(k-2)A(k-1) \cdots A(l)$, with k-1 factors. >If $l = 0$, $\Phi{(k;0)} = A^k$ $\Phi{(k;0)} = I + kB + \frac{k(k-1)}{2}B^2$ . . . . ~~~ The key is to get the Transition matrix ~~~ Continuous Time system: --- ### With zero-input continuous time case: $\dot{X(t)} = A(t)X(t) \ ; t > t_0$ $X_0(t_0) = X_I$ Transition matrix would be: $\Phi{(t; t_0)}_{n \times n}$ $X(t) = \Phi{(t; t_0)} X(t_0)$ ### Scalar case: $\dot{x(t)} = a(t)x(t), \ t > 0$ $x(0) = x_0$ . . . figure of 2/22 -1 Finally, the transistion matrix is $\Phi{(t; 0)} = e^{\int^{t}_{\tau = 0}a(t)dt}$ ### case: 1, if $\Phi{(0;0)}$ Then $\Phi{(0;0)} = 1 ### Solution by successive Approximation:(Iterative series solution ) `(1)` $\dot{x(t)} = A(t)x(t)$ $d\dot{x(t)} = A(t)x(t)dt$ ### Zero order solution: $x_0(t) = x_I, for \ all \ t \geq t_0$ ### First order solution is obtained by inserting $x_0(t)$ on the right hand side of `(1)` and integrating. $x_1(t) - x_I = \int_{t_0}^tA(\tau)x_0(\tau)d\tau$ Also, the function can be re-written as $x_1(t) = x_I + [ \int_{t_0}^tA(\tau)d\tau]x_I$ $\vdots$ 2/28 --- . . . #### By $0 = {A_0}^n + \sum_{k=0}^{n-1} a_k {A_0}^k$ **Characteristics equation** = $\sum_{k=0}^{n-1} \alpha_k (t-t_0){A_0}^k$ $\dot{\alpha}(t) = matrix \times \alpha$, which $\alpha(0) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ \end{bmatrix}$, which $\dot{\alpha}(t)$ is a nx1 matrix ### Theorem: Suppose $f(\lambda)$ is an arbitrary function of a scalar variable $\lambda$ and $g(\lambda) is \ a (n-1)^{th}$ degree polynomial in $\lambda [ there \ are \ n \ contants \ involved]$. ### If $f(\lambda_i) = g(\lambda_i)$ for every eigenvalue $\lambda$ of an `nxn` matrix $A_0$, then **$f(A_0) = g(A_0)$**. ## Method-2 ### In our case we seek $f(A_0) = e^{tA_0}$, which $e^{tA_0} = g(A_0)$. --- ### $x(t) = \Phi{(t; t_0)}x(t_0)$ ### $L[x(t)] = \int_0^\infty x(t)e^{-st}dt$ ### $L[\dot{x(t)}] = Sx(S) - x(0)$ ## For $t_0 = 0$ $sX(s) - x(0) = A_0X(x)$ $[SI - A_0]X(s) = x(0)$ $X(s) = [SI - A_0]^{-1}x(0)$ Thus, $x(t) = L^{-1}X(s) = [L^{-1}(SI - A_0)]x(0) = e^{A_0t}x(0)$ ## Method-3 ### $e^{tA_0} = L^{-1}(SI - A_0)^{-1}$ --- Example: --- $A_0 = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ \end{bmatrix}$, what is $e^{A_0t}$? Sol: --- $det(A_0 - \lambda I) = 0$ $0 = (\lambda + 3)(\lambda + 2)$, Thus $\lambda = -2, -3$ $f(A_0) = e^{A_0t}$; $f(\lambda) = e^{\lambda t}$ $g(\lambda) = a_0 + a_1 \lambda$, $a_0 = ?, a_1 = ?$ $f(\lambda_1) = e^{-3t} = a_0 -3a_1$ $f(\lambda_2) = e^{-2t} = a_0 -2a_1$ $g(A_0) = a_0I + a_1A_0$ **$f(A_0)= e^{A_0t} = a_0I + a_1A_0$** (These will be function of time) $a_1 = e^{-2t} - e^{-3t}$ $a_0 = e^{-2t} + 2a_1 = 3e^{-2t} -2e^{-3t}$ . . . $e^{A_0t} = \begin{bmatrix} e^{-3t} & e^{-2t}-e^{-3t} \\ 0 & e^{-2t} \\ \end{bmatrix}$ ### Thus, the transition matrix is: $\Phi{(t; t_0)} = \begin{bmatrix} e^{-3(t-t_0)} & e^{-2(t-t_0)}-e^{-3(t-t_0)} \\ 0 & e^{-2(t-t_0)} \\ \end{bmatrix}$ ## laplace Tranceform: $SI - A_0 = \begin{bmatrix} S+3 & -1 \\ 0 & S+2 \\ \end{bmatrix}$ $(SI - A_0)^{-1} = \frac{1}{(S+3)(S+2)}\begin{bmatrix} S+2 & 1 \\ 0 & S+3 \\ \end{bmatrix}$ $L^{-1}(SI - A_0)^{-1} = \begin{bmatrix} L^{-1}\frac{(S+2)}{(S+3)(S+2)} & L^{-1}\frac{1}{(S+3)(S+2)} \\ L^{-1}(0) & L^{-1}\frac{(S+3)}{(S+3)(S+2)} \\ \end{bmatrix} = \begin{bmatrix} e^{-3t} & e^{-2t}-e^{-3t} \\ 0 & e^{-2t} \\ \end{bmatrix}$ * partial fraction expension 3/2 === Properties of Transition Matrix --- $\dot{x}(t) = A(t)x(t)$, which $x(t_0) = x_I$ $x(t) = \Phi_A{(t; t_0)}x(t_0)$. $\Phi_A{(t; \tau)} = I + \int_\tau^ta(\delta_1)d\delta_1 + \int_\tau^td\delta_1\int_\tau^{\delta_1}A(\delta_1)A(\delta_2)d\delta_2$ . . . ### Peamo-Baken series #### Special case - 1 Linear Time InvariantLTI $A(t) = A_0$, **constant** Transition Matrix : $\Phi_{A_0}(t; \tau) = e^{(t-\tau)A_0}$ ### $= \Phi_{A_0}(t-\tau; 0)$ #### Special case - 2 (Time Varying) ##### If for every $t, \tau$ $A(t) \int_\tau^tA(\delta)d\delta$ $= [ \int_\tau^tA(\delta)d\delta]A(t)$ #### Case 3: when $t = \tau$ ### $\Phi_A(t; t) = I$ #### Case 4: $\Phi_A(t; \tau) = X(t)X^{-1}(\tau)$ ## Case 5, Differential the Transistion matrix $\frac{d}{dt}\Phi_A(t; \tau) = A(t)\Phi_A(t; \tau)$ $\frac{d}{d\tau}\Phi_A(t; \tau) = - \Phi_A(t, \tau)A(\tau)$ ## Case 6, Property of Composition $\Phi_A(t; \tau) = \Phi_A(t; \delta)\Phi_A(\delta; t)$ #### Addition with $t = \tau$ $\Phi_A(t; \tau)\Phi_A(\delta; t) = I$ $\Phi_A(t; \delta)^{-1} = \Phi_A(\delta; t)$ #### Case 7 If $\dot{z}(t) = - A^T(t)z(t)$, adjoint problem $\dot{x}(t) = A(t)x(t)$, Original problem then, $\Phi_{-A^T}(t; \tau) = {\Phi_A}^T(\tau; t)$ #### Case 8 ### $det(\Phi_A(t; \tau)) = e^{\int_\tau^tTr[A(\delta)]d\delta}$ #### Case 9, Similarity Transformation $x(t) = P(t)z(t) \Longrightarrow z(t) = P^{-1}(t)x(t)$, keep in mind that `P(t)` should be invertible. $\dot{z}(t) = F(t)z(t); F(t) = P^{-1}(t)A(t)P(t) - P^{-1}(t)\dot{P(t)}$ Then, $\Phi_F(t; \tau) = P^{-1}(t)\Phi_A(t;\tau)P(\tau)$ Choose $P(t) = \Phi_A(t; t_0)$ and property 9, then we can prove `*` `*` $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ Solution for`*` : $x(t) = \Phi(t; t_0)x(t_0) + \int_{t_0}^t\Phi(t; \delta)B(\delta)u(\delta)d\delta$ 3/4 === LTI --- $\dot{x} = Ax+Bu$, which A and B are constant. $y(t) = Cx+Du$, which C and D are constant. #### with Laplace Transform $sX(s) - x(0) = AX(s) = BU(s)$ $Y(s) = CX(s) +DU(s)$ #### Take initial condition to be zero . . . ### Transform Function Matrix $C(SI-A)^{-1}B+D$, which $(SI-A)^{-1} = L[\Phi(t; 0)]$ #### Used for discrete timess: z transform #### Another way to look at Transistion matrix $\sigma(k) = 1$, when k = 0; $\sigma(k) = 0$, when k != 0; #### recall, $X(s) = \int_{t=0}^\infty x(t)e^{-St}dt$ . . . Inverse of Laplace transform . . . Properties --- $x(k): x(0), x(1), x(2), \cdots$ $x(k-1): 0, x(0), x(1), \cdots$, delayed. $x(k+1): x(1), x(2), x(3), \cdots$, advanced. 3/7 === Three stability --- 1. Uniform stability 2. Uniform exponential stability 3. Uniform asymptotic stability Mathematical Definition - Uniform stability --- $\dot{x} = A(t)x(t)$, which $u(t) \equiv 0$ $x(t_0) = x_0$ The linear state equation (1) is uniformly stable **if** there exists a postive constant $\gamma \ge 1$ such that for any $t_0$ and $x_0$, the salutation of (1) satisfies: $||x(t)|| \le \gamma ||x_0||$, which $t > t_0$ ### Equivalent Definition Given any positive constant $\epsilon$, then exists a positive constant $\delta$ such that, regardless of $t_0$, if $||x_0|| < \delta$, then the corresponding solution satisfies $||x(t)|| \le \epsilon$ $for \ all \ t \ge t_0$. Thus, $\delta \le \epsilon$ Mathematical Definition - Uniform Exponential stability --- The linear state equation (1) is uniformly exponentially stable **if** there exists a postive constant $\gamma \ge 1$, $\lambda$ such that for any $t_0$ and $x_0$ the solution of (1) satisfies: $||x_0|| \le \gamma ||x_0||e^{-\lambda (t - t_0)}$, $t > t_0$ ### Theorem_1: System (1) is uniformly stable **if and only if** there exists a positive constant $\gamma$ such that $||\Phi(t, \tau)|| \le \gamma$; $for \ all \ \tau \ and \ t$ Since the solution of system (1): $x(t) = \Phi(t; t_0)x_0 \Rightarrow ||x(t)|| \le ||\Phi(t; t_0)|| \times ||x_0||$ ### Theorem_2: The system (1) is uniformly exponentially stable if there exists postive constants $\gamma \ge 1$, $\lambda$ such that: $||\Phi(t; t_0)|| \le \gamma e^{-\lambda(t-\tau)}$, $for \ all \ t, \tau$ Example: --- $\dot{x}(t) = 2t(2sin(t) - 1)x(t)$, $x(t_0) = x_0$ Solution : --- ### Does the solution uniformly stable? Choose $t_0 = 2 \pi k$, $k=0,1,2,3...$ $t= t_0+ \pi$ Since one single $\gamma$ won't serve the purpose, $x(t) = x_0e^{\pi(t- \pi)(4k+1)} \le \gamma$