<style> .reveal { font-size: 24px; } .reveal section img { background:none; border:none; box-shadow:none; } pre.graphviz { box-shadow: none; } </style> # Memory & Cache *(AMH chapters 8-9)* Performance Engineering, Lecture 4 Sergey Slotin May 14, 2022 --- ```nasm ; *c = *a + *b mov eax, DWORD PTR [rsi] add eax, DWORD PTR [rdi] mov DWORD PTR [rdx], eax ``` `add` = one cycle, `mov` = depends ---- ![](https://en.algorithmica.org/hpc/external-memory/img/memory-vs-compute.png =600x) ---- ![](https://en.algorithmica.org/hpc/external-memory/img/hierarchy.png =500x) ---- - *total size* $M$ - *block size* $B$ - *latency* (time to fetch one byte) - *bandwidth* (> B-times-latency implies concurrent operations) - *cost* (the chip itself, power, maintenance, etc.) <!-- .element: class="fragment" data-fragment-index="1" --> - *volatility* (whether the data is preserved on shutdown) <!-- .element: class="fragment" data-fragment-index="2" --> ---- | Type | $M$ | $B$ | Latency | Bandwidth | $/GB/mo | |:-----|:---------|-----|---------|-----------|:------------------| | L1 | 10K | 64B | 2ns | 80G/s | - | | L2 | 100K | 64B | 5ns | 40G/s | - | | L3 | 1M/core | 64B | 20ns | 20G/s | - | | RAM | GBs | 64B | 100ns | 10G/s | 1.5 | | SSD | TBs | 4K | 0.1ms | 5G/s | 0.17 | | HDD | TBs | - | 10ms | 1G/s | 0.04 | | S3 | $\infty$ | - | 150ms | $\infty$ | 0.02 + i/o | For comparison: one virtual CPU core is $5-15/mo (Approximate 2022 figures, [Google Cloud pricing](https://cloud.google.com/products/calculator?skip_cache=true)) ---- {%youtube 3owqvmMf6No %} --- ### External Memory Model - Dataset of size $N$ stored in *external* memory - We can read and write in blocks of $B$ elements - We can store $M$ elements in *internal* memory (= up to $\left \lfloor \frac{M}{B} \right \rfloor$ blocks) - We only care about I/O operations: any in-between computations are free - We additionally assume $N \gg M \gg B$ ---- ### Array scan $$ \underbrace{a_1, a_2, a_3,} _ {B_1} \underbrace{a_4, a_5, a_6,} _ {B_2} \ldots \underbrace{a_{n-3}, a_{n-2}, a_{n-1}}_{B_{m-1}} $$ ---- $$ SCAN(N) \stackrel{\text{def}}{=} O\left(\left \lceil \frac{N}{B} \right \rceil \right) \; \text{IOPS} $$ ---- ```cpp FILE *input = fopen("input.bin", "rb"); const int M = 1024; int buffer[M], sum = 0; // while the file is not fully processed while (true) { // read up to M of 4-byte elements from the input stream int n = fread(buffer, 4, M, input); // ^ the number of elements that were actually read // if we can't read any more elements, finish if (n == 0) break; // sum elements in-memory for (int i = 0; i < n; i++) sum += buffer[i]; } fclose(input); printf("%d\n", sum); ``` (Buffering also happens when you just read a stream) --- ### External Sorting ---- ```cpp void merge(int *a, int *b, int *c, int n, int m) { int i = 0, j = 0; for (int k = 0; k < n + m; k++) { if (i < n && (j == m || a[i] < b[j])) c[k] = a[i++]; else c[k] = b[j++]; } } ``` $SCAN(N+M)$ ---- K-way merging? Still $SCAN(N)$ as long as we can fit $k$ blocks in memory ($M \geq B^{1+ε}$ for $\epsilon > 0$) <!-- .element: class="fragment" data-fragment-index="1" --> ---- ### Merge Sorting ![](https://en.algorithmica.org/hpc/external-memory/img/k-way.png =500x) The first $O(\log M)$ layers of mergesort are free, and there are only $O(\log_2 \frac{N}{M})$ non-zero-cost layers, each mergeable in $O(\frac{N}{B})$ IOPS in total <!-- .element: class="fragment" data-fragment-index="1" --> $$ O\left(\frac{N}{B} \log_2 \frac{N}{M}\right) $$ <!-- .element: class="fragment" data-fragment-index="2" --> ---- ### $k$-way Mergesort What if we split and merge $k$ arrays instead of two? $$ SORT(N) \stackrel{\text{def}}{=} O\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{M} \right) $$ <!-- .element: class="fragment" data-fragment-index="1" --> ---- ### Joining **Problem.** Given two lists of tuples $(x_i, a_{x_i})$ and $(y_i, b_{y_i})$, output a list $(k, a_{x_k}, b_{y_k})$ such that $x_k = y_k$ **Solution:** Sort two lists and use two pointers to merge them <!-- .element: class="fragment" data-fragment-index="1" --> (Beneficial to keep the arrays sorted) <!-- .element: class="fragment" data-fragment-index="1" --> --- - *Temporal locality*: same data is accessed within a small time period - *Spatial locality*: neighboring elements are accessed simultaneously ---- ### breadth-first vs depth-first recursion (E. g. merge sorting) - Breadth-first: read the entire array $O(\log N)$ times <!-- .element: class="fragment" data-fragment-index="1" --> - Depth-first: read the entire array $O(\log \frac{N}{M})$ times (on each cache level) <!-- .element: class="fragment" data-fragment-index="2" --> ---- ### Dynamic Programming ---- ```python @lru_cache def f(n, w): # check if we have no items to choose if n == 0: return 0 # check if we can't pick the last item (note zero-based indexing) if c[n - 1] > w: return f(n - 1, w) # otherwise, we can either pick the last item or not return max(f(n - 1, w), c[n - 1] + f(n - 1, w - c[n - 1])) ``` ---- ```cpp int f[N + 1][W + 1] = {0}; // this zero-fills the array for (int n = 1; n <= N; n++) for (int w = 0; w <= W; w++) f[n][w] = c[n - 1] > w ? f[n - 1][w] : max(f[n - 1][k], c[n - 1] + f[n - 1][w - c[n - 1]]); ``` ---- ```cpp bool f[W + 1] = {0}; f[0] = 1; for (int n = 0; n < N; n++) for (int x = W - c[n]; x >= 0; x--) f[x + c[n]] |= f[x]; ``` ---- ```cpp std::bitset<W + 1> b; b[0] = 1; for (int n = 0; n < N; n++) b |= b << c[n]; ``` ---- ### Sparse Table ![](https://en.algorithmica.org/hpc/external-memory/img/sparse-table.png =500x) $$ t[k][i] = \min \{ a_i, a_{i+1}, \ldots, a_{i+2^k-1} \} $$ ---- ```cpp int rmq(int l, int r) { // half-interval [l; r) int t = __lg(r - l); return min(mn[t][l], mn[t][r - (1 << t)]); } ``` ---- $$ t[k][i] = \min(t[k-1][i], t[k-1][i+2^{k-1}]) $$ There are $2×2=4$ ways to build it ---- ```cpp int mn[logn][maxn]; memcpy(mn[0], a, sizeof a); for (int l = 0; l < logn - 1; l++) for (int i = 0; i + (2 << l) <= n; i++) mn[l + 1][i] = min(mn[l][i], mn[l][i + (1 << l)]); ``` --- ![](https://cs5.pikabu.ru/post_img/2015/12/24/5/1450939303111970610.jpg =600x) --- ## Bandwidth Like throughput, but for data transmission ---- ```cpp int a[N]; for (int t = 0; t < K; t++) for (int i = 0; i < N; i++) a[i]++; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/inc.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/boost.svg =500x) ---- Read only: ```cpp for (int i = 0; i < N; i++) s += a[i]; ``` Write only: ```cpp for (int i = 0; i < N; i++) a[i] = 0; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/directional.svg =500x) Why is read-only faster? Write needs to update cache, doubling traffic between CPU and RAM <!-- .element: class="fragment" data-fragment-index="1" --> ---- ```cpp const __m256i zeros = _mm256_set1_epi32(0); for (int i = 0; i + 7 < N; i += 8) _mm256_store_si256((__m256i*) &a[i], zeros); ``` ```cpp const __m256i zeros = _mm256_set1_epi32(0); for (int i = 0; i + 7 < N; i += 8) _mm256_stream_si256((__m256i*) &a[i], zeros); // "stream" operations bypass cache ``` <!-- .element: class="fragment" data-fragment-index="1" --> ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/non-temporal.svg =500x) - the memory controller doesn't have to switch the between reading and writing <!-- .element: class="fragment" data-fragment-index="1" --> - the instruction sequence is simpler, allowing for more pending operations <!-- .element: class="fragment" data-fragment-index="2" --> - the memory controller can "fire and forget" non-temporal write requests <!-- .element: class="fragment" data-fragment-index="3" --> You can speed up `memset` and `memcpy` if you don't need output array right away <!-- .element: class="fragment" data-fragment-index="4" --> --- ## Latency Time to fetch one byte ---- ```cpp int p[N], q[N]; // generate a random permutation iota(p, p + N, 0); random_shuffle(p, p + N); // make a guaranteed single-cycle permutation out of it int k = p[N - 1]; for (int i = 0; i < N; i++) k = q[k] = p[i]; for (int t = 0; t < K; t++) for (int i = 0; i < N; i++) k = q[k]; ``` This anti-pattern is called *pointer chasing* ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/latency-throughput.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-latency.svg =500x) (Not *real* latency because of random cache line sharing, but close enough) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-boost.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-boost-speedup.svg =500x) --- ## Cache lines The main memory is split into blocks of $B=64$ bytes ---- Tweakable parameter `D`: ```cpp for (int i = 0; i < N; i += D) a[i]++; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/strided.svg =500x) $D=1$ increments using two vector instructions, while $D=16$ needs just one (bottlenecked by write) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/strided2.svg =500x) $D=8$ also needs one vector write ---- ```cpp struct padded_int { int val; int padding[15]; }; padded_int q[N / 16]; // constructing a cycle from a random permutation // ... for (int i = 0; i < N / 16; i++) k = q[k].val; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-padded.svg =500x) Each element is more likely to be kicked out of the cache --- ## Memory Sharing RAM and L3 cache are shared between CPU cores ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/lstopo.png =300x) `lstopo` output ---- - `parallel` to run a command in parallel - `taskset` to fix restrict them to specific cores (CPU affinity) ```bash parallel taskset -c 0,1,2,3 ./run ::: {0..3} ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/parallel.svg =500x) ---- ```bash parallel taskset -c 0,1 ./run ::: {0..1} # L3 cache sharing parallel taskset -c 0,4 ./run ::: {0..1} # no L3 cache sharing ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/affinity.svg =500x) Workload affinity matters in NUMA systems ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/parallel-bandwidth.svg =500x) --- ## Memory-Level Parallelism Memory operations can overlap (This is why pointer chasing is so slow) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/latency-bandwidth.svg =500x) ---- A more direct experiment: ```cpp const int M = N / D; int p[M], q[D][M]; for (int d = 0; d < D; d++) { iota(p, p + M, 0); random_shuffle(p, p + M); k[d] = p[M - 1]; for (int i = 0; i < M; i++) k[d] = q[d][k[d]] = p[i]; } for (int i = 0; i < M; i++) for (int d = 0; d < D; d++) k[d] = q[d][k[d]]; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-mlp.svg =500x) ---- When # of "memory lanes" is fewer than # of registers: ```nasm dec edx movsx rdi, DWORD PTR q[0+rdi*4] movsx rsi, DWORD PTR q[1048576+rsi*4] movsx rcx, DWORD PTR q[2097152+rcx*4] movsx rax, DWORD PTR q[3145728+rax*4] jne .L9 ``` Register spill otherwise: ```nasm mov edx, DWORD PTR q[0+rdx*4] mov DWORD PTR [rbp-128+rax*4], edx ``` --- ## Prefetching You can request the data you are likely to read ahead of time ---- If the access pattern is simple, the hardware will do the prefetching for you: ```cpp int p[15], q[N]; iota(p, p + 15, 1); for (int i = 0; i + 16 < N; i += 16) { random_shuffle(p, p + 15); int k = i; for (int j = 0; j < 15; j++) k = q[k] = i + p[j]; q[k] = i + 16; } ``` Flat 3ns (as if it was in L1 cache) regardless of array size ---- - Hardware prefetcher activates when "natural" traffic is low - It can only detect simple access patterns, e. g. linear iteration - You can explicitly prefetch needed cache line with software: <!-- .element: class="fragment" data-fragment-index="1" --> ```cpp __builtin_prefetch(&a[k]); ``` <!-- .element: class="fragment" data-fragment-index="1" --> ---- ```cpp const int n = find_prime(N); // largest prime not exceeding N for (int i = 0; i < n; i++) q[i] = (2 * i + 1) % n; ``` If $n$ is a prime, the period will be exactly $n$ (an LCG property) ---- We can now peek ahead: ```cpp int k = 0; for (int t = 0; t < K; t++) { for (int i = 0; i < n; i++) { __builtin_prefetch(&q[(2 * k + 1) % n]); k = q[k]; } } ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/sw-prefetch.svg =500x) ---- $$ \begin{aligned} f(x) &= 2 \cdot x + 1 \\ f^2(x) &= 4 \cdot x + 2 + 1 \\ f^3(x) &= 8 \cdot x + 4 + 2 + 1 \\ &\ldots \\ f^k(x) &= 2^k \cdot x + (2^k - 1) \end{aligned} $$ ---- Prefetch $D$-th element ahead: ```cpp __builtin_prefetch(&q[((1 << D) * k + (1 << D) - 1) % n]); ``` (Due to MLP, this will concurrently execute $(D + 1)$ reads on average) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/sw-prefetch-others.svg =500x) --- ## Cache associativity How are caches implemented in hardware? ---- Loop A: ```cpp for (int i = 0; i < N; i += 256) a[i]++; ``` Loop B: ```cpp for (int i = 0; i < N; i += 257) a[i]++; ``` Which one is faster? **B, by 10x!** <!-- .element: class="fragment" data-fragment-index="1" --> ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/strides-small.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/cache1.png =500x) Fully associative cache ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/cache2.png =500x) Direct-mapped cache ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/cache3.png =500x) Set-associative cache (2-way associative) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/address.png =400x) - *offset* — the index of the word within a 64B cache line ($\log_2 64 = 6$ bits) - *index* — the index of the cache line set (the next $12$ bits as there are $2^{12}$ cache lines in the L3 cache) - *tag* — the rest of the memory address, which is used to tell the memory blocks stored in the cache lines apart When we iterate in steps of 256, all accessed elements map to the same cache line <!-- .element: class="fragment" data-fragment-index="1" --> --- ## Paging The memory a process sees is not mapped directly to physical memory ---- ```cpp const int N = (1 << 13); int a[D * N]; for (int i = 0; i < D * N; i += D) a[i] += 1; ``` (Same as in the bandwidth experiment, but we adjust array size) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/strides.svg =500x) ---- ![](https://en.algorithmica.org/hpc/external-memory/img/virtual-memory.jpg =500x) ---- 16G RAM / 4K page size = 4M pages We can **increase page size** and/or introduce a separate **cache for the page table** ---- - The L1 TLB has 64 entries, and if the page size is 4K, then it can handle $64 \times 4K = 512K$ of active memory without going to the L2 TLB - The L2 TLB has 2048 entries, and it can handle $2048 \times 4K = 8M$ of memory without going to the page table $$ 8K \times 256 \times 4B = 8M $$ <!-- .element: class="fragment" data-fragment-index="1" --> ---- Page size is usually 4K but can be increased ```cpp #include <sys/mman.h> void *ptr = std::aligned_alloc(page_size, array_size); madvise(ptr, array_size, MADV_HUGEPAGE); ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/strides-hugepages.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/permutation-hugepages.svg =500x) --- ### AoS vs SoA Pointer chasing, but we have to read $D$ elements to compute the next pointer ---- ```cpp const int M = N / D; // # of memory accesses int p[M], q[M][D]; // SoA is reversed (q[D][M]) iota(p, p + M, 0); random_shuffle(p, p + M); int k = p[M - 1]; for (int i = 0; i < M; i++) q[k][0] = p[i]; for (int j = 1; j < D; j++) q[i][0] ^= (q[j][i] = rand()); k = q[k][0]; } for (int i = 0; i < M; i++) { int x = 0; for (int j = 0; j < D; j++) x ^= q[k][j]; k = x; } ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/aos-soa.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/soa-hugepages.svg =500x) ---- ```cpp struct padded_int { int val; int padding[15]; }; const int M = N / D / 16; padded_int q[M][D]; ``` ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/aos-soa-padded.svg =500x) ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/aos-soa-padded-n.svg =500x) This must be a RAM-specific issue ---- ![](https://en.algorithmica.org/hpc/cpu-cache/img/ram.png =500x)
{"metaMigratedAt":"2023-06-17T00:49:03.131Z","metaMigratedFrom":"YAML","title":"Memory & Cache","breaks":true,"slideOptions":"{\"theme\":\"white\"}","contributors":"[{\"id\":\"045b9308-fa89-4b5e-a7f0-d8e7d0b849fd\",\"add\":18680,\"del\":1581}]"}
    256 views