加速 AI 部署之路:Azure AI Foundry 暨模型表現評測工具
Azure AI Foundry 的 Model Catalog 專為開發者和工程師設計,讓您可以輕鬆快速地部署和管理各式各樣的生成式 AI 模型。本次分享將帶您深入了解如何利用 Model Catalog 加速 AI 工作流程,從選擇和自定義預建模型,到在 Azure 平台上大規模部署。我們將探討模型管理的最佳實踐、無縫的應用整合,以及如何優化您的 AI 管道,提升生產效率。
講者:Yvonne Shih
台灣微軟 雲端解決方案架構師
讓我們一起編輯留存今日的複習資源。
背景:每個組織已經不會使用單一模型,逐漸導向多模型應用整合
從傳統的MLOps -> GenAIOps
過去只談準確,逐漸往合作、整合資產,組合關鍵component
Image Not Showing
Possible Reasons
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →
Image Not Showing
Possible Reasons
- The image was uploaded to a note which you don't have access to
- The note which the image was originally uploaded to has been deleted
Learn More →
以Azure AI Foundry的Model Catalog找尋適用的Model,完成多模型選用。
選用Model完成後,運用AI Model Fine-tuning進行模型微調。
- 安全:BYO Storage, VNet,讓企業模型都在自己的企業內網
-
非單一AI Agent建置服務完成AI服務。
- Trend: Agentic, Multi models.
整體工作流程:
- Model Catalog選定模型
- Benchmark Metric進行模式篩選
- Chat playground挑選合適的Prompt
- Prompt flow建立適合的提示詞工作流程,可以整合多個不同的ai agent。
- 以evaluate進行Workflow串接後的效能。
- Trace檢查log
- AI Model fine-tune
- 串接 AI Agent Service
- Azure Safety進行資安相關確認
- 佈署AI服務
- Management Center確認AI workload