<!-- Début préambule à ne pas modifier --> $$ \def\moy#1{{\langle #1 \rangle}} \def\abs#1{{\left| #1 \right|}} \def\dd{\mathrm{d}} \def\ed{\mathrm{e}} \def\norm#1{{\parallel #1 \parallel}} \def\ket#1{{| #1 \rangle}} \def\bra#1{{\langle #1|}} \def\braket#1#2{{\langle #1 | #2 \rangle}} \def\un{\small1\normalsize\kern-.33em1} $$ # HOM Metrology ### Swap operator $$ S\ket{\omega_1}\otimes \ket{\omega_2} = \ket{\omega_2}\otimes \ket{\omega_1} $$ ### Coincidence probability $P_c$ $$ P_c = \frac{1}{2}\left(1-\bra{\psi}U^{\dagger}SU\ket{\psi}\right) $$ where $U = e^{-i\kappa H}$ As $SS= \un$, $P_c$ can also be written as $$ P_c = \frac{1}{2}\left(1-\bra{\psi}U^{\dagger}SUS S\ket{\psi}\right) $$ and $U^{\dagger}SUS = e^{i\kappa H}e^{-i\kappa SHS}$. Therefore $$ P_c(\kappa) = \frac{1}{2}\left(1-\bra{\psi}e^{i\kappa H}e^{-i\kappa SHS}S\ket{\psi}\right) $$ ### Near $\kappa = 0$, we can write $$ e^{i\kappa H}e^{-i\kappa SHS} = (\un + i\kappa H - \frac{1}{2}\kappa^2H^2) (\un - i\kappa SHS - \frac{1}{2}\kappa^2SH^2S) + \cdots \\ = \un + i\kappa(H-SHS) -\frac{\kappa^2}{2}(H^2 + SH^2S -2 HSHS) + \cdots $$ and thus :::info $$ P_c(\kappa) = \frac{1}{2}\left(1-\bra{\psi}S\ket{\psi} +i\kappa\bra{\psi}[H,S]\ket{\psi} -\frac{\kappa^2}{2}\bra{\psi}(H^2 + SH^2S - 2HSHS)S \ket{\psi} \right) $$ ::: now we can consider special cases * $S\ket{\psi} = \pm \ket{\psi}$ * $[H,S] = 0$ Considering $S\ket{\psi} = \pm \ket{\psi}$ then the linear term in $\kappa$ becomes zero, thus near $\kappa = 0$ we have $$ P_c(\kappa) = \frac{1}{2}\left(1-\bra{\psi}S\ket{\psi} - \frac{\kappa^2}{2}\bra{\psi}(H^2 + SH^2S - 2HSHS)S \ket{\psi} \right) $$ also if either $S\ket{\psi} = \pm \ket{\psi}$ or $[H,S] = 0$ then $\bra{\psi}H^2 + SH^2S - 2HSHS\ket{\psi} = \pm \bra{\psi}(H-SHS)^2\ket{\psi}$ thus $$ P_c(\kappa) = \frac{1}{2}\left(1\pm 1 \pm \frac{\kappa^2}{2}\bra{\psi}(H- SHS)^2 \ket{\psi} \right) $$ ### For all $\kappa$ (not necessarily near zero) we can write $$ \frac{d}{d\kappa} e^{i\kappa H}e^{-i\kappa SHS} = i\left(H - e^{i\kappa H} SHS e^{-i\kappa H}\right)e^{i\kappa H}e^{-i\kappa SHS} $$ ## Fisher Information For a Bernouilly probability distribution $P_c(\kappa)$, $1-P_c(\kappa)$, the Fisher information $I$ is given by $$ I = \frac{1}{P_c(1-P_c)}\left[\frac{dP}{d\kappa}\right]^2 $$ With $P_c(\kappa)$ given by $$ P_c(\kappa) \simeq \frac{1}{2}\left(1-\bra{\psi}S\ket{\psi} +i\kappa\bra{\psi}[H,S]\ket{\psi} -\frac{\kappa^2}{2}\bra{\psi}(H^2 + SH^2S - 2HSHS)S \ket{\psi} \right) $$ we obtain at $\kappa=0$ $$ I = \frac{\abs{\moy{[H,S]}}^2}{(1+ \moy{S})(1-\moy{S})}; \text{ if } \moy{S} \neq 0. $$ Only in the case $\moy{S}=0$, the Fisher information is given by $$ I = 2 \frac{d^2P_c(\kappa)}{d\kappa^2}; \text{ if } \moy{S}= 0. $$ ## Minimum of $P_c(\kappa)$ : The position $\kappa_m$ of the minimum of $P_c(\kappa)$ given by $$ P_c(\kappa) \simeq \frac{1}{2}\left(1-\bra{\psi}S\ket{\psi} +i\kappa\bra{\psi}[H,S]\ket{\psi} -\frac{\kappa^2}{2}\bra{\psi}(H^2 + SH^2S - 2HSHS)S \ket{\psi} \right) $$ is $$ \kappa_m \simeq \frac{i\moy{[H,S]}}{\moy{H^2S + SH^2 - 2HSHS}} $$ ## Remark about $\moy{[H,S]}$ for a non-factorizable JSA in $\omega_{\pm}$ variables First, $$\moy{[H,S]} = -2i\text{Im}(\moy{HS})$$ let's write the state $\ket{\psi}$ as $$ \ket{\psi} = \int d\omega_1\int d\omega_2 J(\omega_1,\omega_2)a_1^\dagger(\omega_1)a_2^\dagger(\omega_2) \ket{\text{vac}} $$ which can be written as $$ \ket{\psi} = \int d\omega_+\int d\omega_- K(\omega_+,\omega_-) a_1^\dagger(\frac{\omega_+ + \omega_-}{2}) a_2^\dagger(\frac{\omega_+ - \omega_-}{2}) \ket{\text{vac}} $$ where $\omega_{\pm} = \omega_1\pm\omega_2$, and $K(\omega_+,\omega_-) = J(\frac{\omega_+ + \omega_-}{2},\frac{\omega_+ - \omega_-}{2})$ Now consider that $H=\hat{\omega}\otimes\un$, then after some simple calculations we obtain $$ \bra{\psi}HS\ket{\psi} = \int d\omega_+ \int d\omega_- \omega_+ K^*(\omega_+,\omega_-)K(\omega_+,-\omega_-) - \int d\omega_+ \int d\omega_- \omega_- K^*(\omega_+,\omega_-)K(\omega_+,-\omega_-) $$ The first term is real and the second term is pure imaginary. This can be see by performing the change of variable $\omega_- \rightarrow -\omega_-$ in the integrals. This cange of variable transform the first term in its conplex congugate and the second term in the opposite of its complex conjugate. Therefore, $$ \moy{[H,S]} = -2i\text{Im}(\moy{HS}) = -2i\int d\omega_+ \int d\omega_- \omega_- K^*(\omega_+,\omega_-)K(\omega_+,-\omega_-) $$ Writting $K(\omega_+,\omega_-)$ as $$ K(\omega_+,\omega_-) = A(\omega_+,\omega_-) e^{i\phi(\omega_+,\omega_-)} $$ where $A(\omega_+,\omega_-) = \abs{K(\omega_+,\omega_-)}$ we have $$ \moy{[H,S]} =-2i\int d\omega_+ \int d\omega_- \omega_- A(\omega_+,\omega_-)A(\omega_+,-\omega_-) e^{i[\phi(\omega_+,\omega_-) - \phi(\omega_+,-\omega_-) ]} $$ which is in fact $$ \moy{[H,S]} =-2i\int d\omega_+ \int d\omega_- \omega_- A(\omega_+,\omega_-)A(\omega_+,-\omega_-) \sin[\phi(\omega_+,\omega_-) - \phi(\omega_+,-\omega_-)] $$ because we know that the integral is pure imaginary. hence, $$ \phi(\omega_+,\omega_-) - \phi(\omega_+,-\omega_-) = k\pi (k\in \mathbb{Z}) \Rightarrow \moy{[H,S]} =0 $$ For instance, if $\phi(\omega_+,-\omega_-)= \phi(\omega_+)$ does not depend upon $\omega_-$, then $\moy{[H,S]} =0$. ## Remark on the phase of the JSA Let $J(\omega_1, \omega_2)$ the JSA. The JTA $S(t_1,t_2)$ si defined as the Fourrier transform: $$ S(t_1,t_2) = \iint d\omega_1 d\omega_2 J(\omega_1, \omega_2) e^{-i\omega_1 t_1}e^{-i\omega_2 t_2} $$ Performing the change of variable $\omega_{\pm} = \omega_1 \pm \omega_2$ we obtain $$ S(t_1,t_2) = \iint d\omega_+ d\omega_- K(\omega_+,\omega_-) e^{-i\omega_+ t_+/2}e^{-i\omega_-t_-/2} $$
{"metaMigratedAt":"2023-06-17T14:44:39.263Z","metaMigratedFrom":"YAML","title":"HOM Metrology","breaks":true,"contributors":"[{\"id\":\"edfd9f36-9126-4f0a-9aba-6a0fbc403d2a\",\"add\":8355,\"del\":2625}]","description":"\n\\def\\moy#1{{\\langle #1 \\rangle}}\n\\def\\abs#1{{\\left| #1 \\right|}}\n\\def\\dd{\\mathrm{d}}\n\\def\\ed{\\mathrm{e}}\n\\def\\norm#1{{\\parallel #1 \\parallel}}\n\\def\\ket#1{{| #1 \\rangle}}\n\\def\\bra#1{{\\langle #1|}}\n\\def\\braket#1#2{{\\langle #1 | #2 \\rangle}}\n\\def\\un{\\small1\\normalsize\\kern-.33em1}\n"}
Expand menu