---
tags: dispersive propagation & Fractional FT
---
<!--
Début préambule à ne pas modifier
-->
$$
\def\moy#1{{\langle #1 \rangle}}
\def\abs#1{{\left| #1 \right|}}
\def\dd{\mathrm{d}}
\def\ed{\mathrm{e}}
\def\norm#1{{\parallel #1 \parallel}}
\def\ket#1{{| #1 \rangle}}
\def\bra#1{{\langle #1|}}
\def\braket#1#2{{\langle #1 | #2 \rangle}}
\def\un{\small1\normalsize\kern-.33em1}
$$
# dispersive propagation & Fractional FT
### The fractional Fourier transform
Following Victor Namias in J. Inst. Maths Applies (1980) 25, 241-265, the fractional Fourier transform $\mathcal{F}_\alpha(x)$ of $f(x)$ is given by (Eq. 3.6):
$$
\mathcal{F}_\alpha f(x) = \frac{\exp\left[i\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)\right]}{\sqrt{2\pi\sin\alpha}} \exp\left[-\frac{i}{2}\cot\alpha x^2\right] \int\exp\left(-\frac{i}{2}\cot\alpha y^2 +\frac{ixy}{\sin\alpha}\right) f(y) dy
$$
which can also be written as
$$
\mathcal{F}_\alpha f(x) = \frac{\exp\left[i\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)\right]}{\sqrt{2\pi\sin\alpha}}
\exp\left[\frac{i}{2}\tan\alpha x^2\right] \int\exp\left[-\frac{i}{2}\cot\alpha\left(y-\frac{x}{\cos\alpha}\right)^2\right] f(y)dy
$$
The definiition of the inverse FFT is obtained by complex conjugaison of this equation with $\alpha$ real.
### The propagation in a dispersive fiber
Following Keisuke Goda and coll. in PHYSICAL REVIEW A 80, 043821 (2009) (Eq. 14), the field amplitude $u(z,T)$ after a propagation distance $z$, at time
$t = T + \beta_1 z$ (where $\beta_1$ is the inverse of the group velocity) is given by:
$$
u(z,T) = \exp\left(-i\frac{T^2}{2\beta_2 z}\right) \int \exp\left[i\frac{\beta_2 z}{2}\left(\omega - \omega_s -\frac{T}{\beta_2 z}\right)^2\right] \tilde{u}(0,\omega-\omega_s)d\omega
$$
where $\tilde{u}(0,x)$ is the Fourier transform of $u(0,x)$. With the change of variable $y = \omega-\omega_s$ we obtain
$$
u(z,T) = \exp\left(-i\frac{T^2}{2\beta_2 z}\right) \int \exp\left[i\frac{\beta_2 z}{2}\left(y -\frac{T}{\beta_2 z}\right)^2\right] \tilde{u}(0,y)dy.
$$
Defining
$$
\beta_2z \equiv \cot\alpha, \quad T \equiv \frac{x}{\sin\alpha},
$$
we obtain
$$
u(z,T) = \exp\left(-i\frac{x^2}{\sin(2\alpha)}\right) \int \exp\left[i\frac{\cot \alpha}{2}\left(y -\frac{x}{\cos\alpha}\right)^2\right] \tilde{u}(0,y)dy
$$
comparing with the definition of the fractional Fourier transform, we have,
$$
u(z,T) = \sqrt{2\pi\sin\alpha}\exp\left[i\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)\right]\exp\left[\frac{i}{2}\cot(\alpha) x^2\right] \mathcal{F}_{\alpha}^{-1} \left[\tilde{u}(0,y)\right].
$$
We conclude that the proppagation over a distance $z$ in a dispersive fiber does not correspond exactly to an inverse fractional Fourier transform. There is an additional quadratic phase $\exp\left[\frac{i}{2}\cot(\alpha) x^2\right]$.
The same problem occurs in the case of Fresnel diffraction (see "Fresnel diffraction and the fractional-orderFourier transform" by Pierre Pellat-Finet in OPTICS LETTERS / Vol. 19, No. 18 / September 15, 1994).
In this reference Pellat-Finet claims that observing the diffraction pattern on a spherical surface instead on a plane solves the problem of the additional quadratic phase. Can we use a similar trick ?