--- tags: 暑假 --- # Baselines ## JW (以下都有code) ### DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-Attention Networks ==WSDM2020== ![](https://i.imgur.com/V7oIWQS.png) - 依時間分類建T張Graph - Python 2.7的tf, 在python3上bug有點多 (但win不支援python2的tensorflow) - ==multi-graph不知道要怎麼建== ### A Contextualized Temporal Attention Mechanism for Sequential Recommendation ==WWW 2020== ![](https://dl.airtable.com/.attachmentThumbnails/768e24f838a4ad2fc1344d6a746442a2/0ed29770) - 把item和time同時放入 - 使用kernal function處理time和action space不同的問題 ### Graph contextualized self-attention network for session-based recommendation ==IJCAI 2019== ![](https://dl.airtable.com/.attachmentThumbnails/fdfd725158a978f667b2201279bf3585/a0106afe) - SR-GNN改良版 - Paper寫是dynamic graph, 但公式看起來沒變 ### Session-based Social Recommendation via Dynamic Graph Attention Networks ==WSDM 2018== ![](https://i.imgur.com/J0Vurah.png) ![](https://i.imgur.com/JlJht8s.png) - 針對每個User都建grpah - Python2.7, 範例資料可以跑得起來 - ==需要socail類的graph== --- ### Global Context Enhanced Graph Neural Networks for Session-based Recommendation ![](https://i.imgur.com/yXJV73I.png) ![](https://dl.airtable.com/.attachmentThumbnails/543c58337b293816ecad2fbdb875daee/810a158f) - SR-GNN的整合版, 對全部item再另外建Graph ### Time Matters: Sequential Recommendation with Complex Temporal Information - 把目前跟下個動作的絕對時間當成embedding跟item的concat - 從PA-GNN跟SR-GNN改來 --- **Dynamic Graph** > https://openreview.net/pdf?id=HyePrhR5KX <!-- ![](https://i.imgur.com/RPFic1S.png) --> ![](https://i.imgur.com/tvbz6Og.png) --- **HyperGraph** ![](https://i.imgur.com/uXt12RL.png) ![](https://dl.airtable.com/.attachmentThumbnails/e58c2f7ee45d05e39678e0adbfc14206/4251d642) ---