--- tags: meeting --- # 12-30 Meeting ## 新版GraphSAGE Training loss <!-- ![](https://i.imgur.com/oqevCnG.png) 各自feature normalize --> ![](https://i.imgur.com/opBVbGQ.png) <!-- ![](https://i.imgur.com/GIkxlkU.png) ![](https://i.imgur.com/Xt28dYZ.png) --> Training MAP 推薦從knn改成dot算score, 且只挑references超過20篇 ![](https://i.imgur.com/iAfsTMi.png) **要比對一下推薦的部分哪裡有問題** ```python graph_scores = np.dot(paper_emb_all, paper_emb.T) graph_recommend_papers = y_all[np.argsort(-graph_scores)][1:K+1] ``` * MAP@150 <!-- ![](https://i.imgur.com/6Vqg4s2.png) --> ![](https://i.imgur.com/GzuFz6R.png) 測試一下的Graph Embedding做推薦也有相同問題 ![](https://i.imgur.com/DffJV3p.png) 目前推測是在算Dot做推薦時有問題,接下來要檢查以下: - MAP的Answer有沒有錯 - 推薦的部分是不是有問題 <!-- 沒答案的會讓MAP是1.0 ![](https://i.imgur.com/yUiVyja.png) ![](https://i.imgur.com/tTUJ9Ze.png) --> ## Optimize Model ## LINE ### First Order and Second Order ![](https://i.imgur.com/WcGMd7O.png) ### BEACON ![](https://i.imgur.com/Sk7Du60.png) ![](https://i.imgur.com/t4BIQac.png) * Author: 800/98001 * Correlation Matrix: (16065, 16065) * Result: ![](https://i.imgur.com/LrlF3M1.png)