# LC 399. Evaluate Division
### [Problem link](https://leetcode.com/problems/evaluate-division/)
###### tags: `leedcode` `python` `medium` `DFS`
You are given an array of variable pairs <code>equations</code> and an array of real numbers <code>values</code>, where <code>equations[i] = [A<sub>i</sub>, B<sub>i</sub>]</code> and <code>values[i]</code> represent the equation <code>A<sub>i</sub> / B<sub>i</sub> = values[i]</code>. Each <code>A<sub>i</sub></code> or <code>B<sub>i</sub></code> is a string that represents a single variable.
You are also given some <code>queries</code>, where <code>queries[j] = [C<sub>j</sub>, D<sub>j</sub>]</code> represents the <code>j<sup>th</sup></code> query where you must find the answer for <code>C<sub>j</sub> / D<sub>j</sub> = ?</code>.
Return the answers to all queries. If a single answer cannot be determined, return <code>-1.0</code>.
**Note:** The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.
**Note:** The variables that do not occur in the list of equations are undefined, so the answer cannot be determined for them.
**Example 1:**
```
Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]
Explanation:
Given: a / b = 2.0, b / c = 3.0
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
return: [6.0, 0.5, -1.0, 1.0, -1.0 ]
note: x is undefined => -1.0
```
**Example 2:**
```
Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
Output: [3.75000,0.40000,5.00000,0.20000]
```
**Example 3:**
```
Input: equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
Output: [0.50000,2.00000,-1.00000,-1.00000]
```
**Constraints:**
- <code>1 <= equations.length <= 20</code>
- <code>equations[i].length == 2</code>
- <code>1 <= A<sub>i</sub>.length, B<sub>i</sub>.length <= 5</code>
- <code>values.length == equations.length</code>
- <code>0.0 < values[i] <= 20.0</code>
- <code>1 <= queries.length <= 20</code>
- <code>queries[i].length == 2</code>
- <code>1 <= C<sub>j</sub>.length, D<sub>j</sub>.length <= 5</code>
- <code>A<sub>i</sub>, B<sub>i</sub>, C<sub>j</sub>, D<sub>j</sub></code> consist of lower case English letters and digits.
## Solution 1 - DFS
```python=
class Solution:
def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
graph = defaultdict(dict)
for (x, y), val in zip(equations, values):
graph[x][y] = val
graph[y][x] = 1 / val
def dfs(x, y, seen):
if x not in graph or y not in graph:
return -1
if y in graph[x]:
return graph[x][y]
for i in graph[x].keys():
if i in seen:
continue
seen.add(i)
tmp = dfs(i, y, seen)
if tmp == -1:
continue
return graph[x][i] * tmp
return -1
res = []
for x, y in queries:
res.append(dfs(x, y, set()))
return res
```
>### Complexity
>n = equations.length = values.length
>m = queries.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(nm) | O(n) |
## Note
x