# LC 42. Trapping Rain Water ### [Problem link](https://leetcode.com/problems/trapping-rain-water/) ###### tags: `leedcode` `python` `c++` `hard` `Monotone Stack` `Two Pointer` Given <code>n</code> non-negative integers representing an elevation map where the width of each bar is <code>1</code>, compute how much water it can trap after raining. **Example 1:** <img src="https://assets.leetcode.com/uploads/2018/10/22/rainwatertrap.png" style="width: 412px; height: 161px;" /> ``` Input: height = [0,1,0,2,1,0,1,3,2,1,2,1] Output: 6 Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. ``` **Example 2:** ``` Input: height = [4,2,0,3,2,5] Output: 9 ``` **Constraints:** - <code>n == height.length</code> - <code>1 <= n <= 2 * 10<sup>4</sup></code> - <code>0 <= height[i] <= 10<sup>5</sup></code> ## Solution 1 #### Python ```python= class Solution: def trap(self, height: List[int]) -> int: n = len(height) left_height, right_height = [0] * n, [0] * n left_height[0] = height[0] right_height[-1] = height[-1] for i in range(1, n): left_height[i] = max(left_height[i - 1], height[i]) for i in range(n - 2, -1, -1): right_height[i] = max(right_height[i + 1], height[i]) res = 0 for i in range(n): res += min(left_height[i], right_height[i]) - height[i] return res ``` #### C++ ```cpp= class Solution { public: int trap(vector<int>& height) { int n = height.size(); vector<int> preMax(n); preMax[0] = height[0]; for (int i = 1; i < n; i++) { preMax[i] = max(preMax[i - 1], height[i]); } vector<int> sufMax(n); sufMax[n - 1] = height[n - 1]; for (int i = n - 2; i >= 0; i--) { sufMax[i] = max(sufMax[i + 1], height[i]); } int ans = 0; for (int i = 0; i < n; i++) { int area = min(preMax[i], sufMax[i]) - height[i]; ans += area; } return ans; } }; ``` ## Solution 2 - Monotone Stack #### Python ```python= class Solution: def trap(self, height: List[int]) -> int: n = len(height) res = 0 stack = [] for i in range(n): while stack and height[i] > height[stack[-1]]: lower = stack.pop() if stack: h = min(height[stack[-1]], height[i]) - height[lower] w = i - stack[-1] - 1 res += h * w stack.append(i) return res ``` #### C++ ```cpp= class Solution { public: int trap(vector<int>& height) { vector<int> st; int res = 0; for (int i = 0; i < height.size(); i++) { while (!st.empty() && height[st.back()] < height[i]) { int mid = st.back(); st.pop_back(); if (!st.empty()) { int h = min(height[st.back()], height[i]) - height[mid]; int w = i - st.back() - 1; res += h * w; } } st.push_back(i); } return res; } }; ``` ## Solution 3 - Two Pointer #### C++ ```cpp= class Solution { public: int trap(vector<int>& height) { int n = height.size(); int left = 0; int right = n - 1; int preMax = 0; int sufMax = 0; int ans = 0; while (left <= right) { preMax = max(preMax, height[left]); sufMax = max(sufMax, height[right]); if (preMax < sufMax) { ans += preMax - height[left]; left++; } else { ans += sufMax - height[right]; right--; } } return ans; } }; ``` >### Complexity >n = height.length >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n) | O(n) | >| Solution 2 | O(n) | O(n) | >| Solution 3 | O(n) | O(1) | ## Note sol1: left_height: left_height[i] = max(height[:i + 1]) right_height: right_height[i] = max(height[i:]) 這樣子針對每個每個位置i, 0 <= i < height.length, 低窪的地方就是min(left_height[i], right_height[i]) - 地面高度(height[i]) sol2: 維護一個大到小的stack, 遇到大於stack頂端的數字就計算可以裝水的面積 [代碼隨想錄](https://github.com/youngyangyang04/leetcode-master/blob/master/problems/0042.%E6%8E%A5%E9%9B%A8%E6%B0%B4.md) sol3: 兩個指針紀錄左邊最大值與右邊最大值, 如果左邊最大值 < 右邊目前的最大值, 代表當前水位最多只能到左邊最大值, 反之亦然.