# LC 637. Average of Levels in Binary Tree
### [Problem link](https://leetcode.com/problems/average-of-levels-in-binary-tree/)
###### tags: `leedcode` `easy` `python` `c++` `Binary Tree`
Given the <code>root</code> of a binary tree, return the average value of the nodes on each level in the form of an array. Answers within <code>10<sup>-5</sup></code> of the actual answer will be accepted.
**Example 1:**
<img alt="" src="https://assets.leetcode.com/uploads/2021/03/09/avg1-tree.jpg" style="width: 277px; height: 302px;" />
```
Input: root = [3,9,20,null,null,15,7]
Output: [3.00000,14.50000,11.00000]
Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11.
Hence return [3, 14.5, 11].
```
**Example 2:**
<img alt="" src="https://assets.leetcode.com/uploads/2021/03/09/avg2-tree.jpg" style="width: 292px; height: 302px;" />
```
Input: root = [3,9,20,15,7]
Output: [3.00000,14.50000,11.00000]
```
**Constraints:**
- The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.
- <code>-2<sup>31</sup> <= Node.val <= 2<sup>31</sup> - 1</code>
## Solution 1
#### Python
```python=
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
res = []
if not root:
return res
q = deque([root])
while q:
size_q = len(q)
tmp_sum = 0
for i in range(size_q):
node = q.popleft()
tmp_sum += node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
res.append(tmp_sum / size_q)
return res
```
#### C++
```cpp=
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> res;
queue<TreeNode*> q;
if (root != nullptr) {
q.push(root);
}
while (!q.empty()) {
int size = q.size();
long int level_sum = 0;
for (int i = 0; i < size; i++) {
TreeNode *node = q.front();
q.pop();
level_sum += node->val;
if (node->left) {
q.emplace(node->left);
}
if (node->right) {
q.emplace(node->right);
}
}
res.push_back((double)level_sum / (double)size);
}
return res;
}
};
```
>### Complexity
>n = number of tree's node
>l = max number of tree level's node
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(n) | O(1) |
## Note
x