# LC 1569. Number of Ways to Reorder Array to Get Same BST
### [Problem link](https://leetcode.com/problems/number-of-ways-to-reorder-array-to-get-same-bst/)
###### tags: `leedcode` `python` `hard` `Math`
Given an array <code>nums</code> that represents a permutation of integers from <code>1</code> to <code>n</code>. We are going to construct a binary search tree (BST) by inserting the elements of <code>nums</code> in order into an initially empty BST. Find the number of different ways to reorder <code>nums</code> so that the constructed BST is identical to that formed from the original array <code>nums</code>.
- For example, given <code>nums = [2,1,3]</code>, we will have 2 as the root, 1 as a left child, and 3 as a right child. The array <code>[2,3,1]</code> also yields the same BST but <code>[3,2,1]</code> yields a different BST.
Return the number of ways to reorder <code>nums</code> such that the BST formed is identical to the original BST formed from <code>nums</code>.
Since the answer may be very large, **return it modulo ** <code>10<sup>9</sup> + 7</code>.
**Example 1:**
<img alt="" src="https://assets.leetcode.com/uploads/2020/08/12/bb.png" style="width: 121px; height: 101px;" />
```
Input: nums = [2,1,3]
Output: 1
Explanation: We can reorder nums to be [2,3,1] which will yield the same BST. There are no other ways to reorder nums which will yield the same BST.
```
**Example 2:**
<img alt="" src="https://assets.leetcode.com/uploads/2020/08/12/ex1.png" style="width: 241px; height: 161px;" />
```
Input: nums = [3,4,5,1,2]
Output: 5
Explanation: The following 5 arrays will yield the same BST:
[3,1,2,4,5]
[3,1,4,2,5]
[3,1,4,5,2]
[3,4,1,2,5]
[3,4,1,5,2]
```
**Example 3:**
<img alt="" src="https://assets.leetcode.com/uploads/2020/08/12/ex4.png" style="width: 121px; height: 161px;" />
```
Input: nums = [1,2,3]
Output: 0
Explanation: There are no other orderings of nums that will yield the same BST.
```
**Constraints:**
- <code>1 <= nums.length <= 1000</code>
- <code>1 <= nums[i] <= nums.length</code>
- All integers in <code>nums</code> are **distinct** .
## Solution 1 - Math
```python=
class Solution:
def numOfWays(self, nums: List[int]) -> int:
mod = 10 ** 9 + 7
n = len(nums)
combMemo = [[0 for _ in range(n)] for _ in range(n)]
def calComb(m, n):
'''
calculate C(m, n)
'''
if combMemo[m][n] != 0:
return combMemo[m][n]
if n > m - n:
return calComb(m, m - n)
if n == 0: return 1
if n == 1: return m
combMemo[m][n] = (calComb(m - 1, n) + calComb(m - 1, n - 1)) % mod
return combMemo[m][n]
def dfs(nums):
m = len(nums)
if m < 3:
return 1
left_nodes, right_nodes = [], []
for num in nums[1:]:
if num < nums[0]:
left_nodes.append(num)
else:
right_nodes.append(num)
left_val = dfs(left_nodes)
right_val = dfs(right_nodes)
return left_val * right_val * calComb(m - 1, len(left_nodes))
return (dfs(nums) - 1) % mod
```
>### Complexity
>n = nums.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O($n^2$) | O($n^2$) |
## Note
計算combination時也可以用math.comb(), time using會差非常多.


[reference(video)](https://www.youtube.com/watch?v=FxGWaG9danM)