# LC 1838. Frequency of the Most Frequent Element
### [Problem link](https://leetcode.com/problems/frequency-of-the-most-frequent-element/)
###### tags: `leedcode` `medium` `c++` `Sliding Window`
The **frequency** of an element is the number of times it occurs in an array.
You are given an integer array <code>nums</code> and an integer <code>k</code>. In one operation, you can choose an index of <code>nums</code> and increment the element at that index by <code>1</code>.
Return the **maximum possible frequency** of an element after performing **at most** <code>k</code> operations.
**Example 1:**
```
Input: nums = [1,2,4], k = 5
Output: 3 **
Explanation:** Increment the first element three times and the second element two times to make nums = [4,4,4].
4 has a frequency of 3.
```
**Example 2:**
```
Input: nums = [1,4,8,13], k = 5
Output: 2
Explanation: There are multiple optimal solutions:
- Increment the first element three times to make nums = [4,4,8,13]. 4 has a frequency of 2.
- Increment the second element four times to make nums = [1,8,8,13]. 8 has a frequency of 2.
- Increment the third element five times to make nums = [1,4,13,13]. 13 has a frequency of 2.
```
**Example 3:**
```
Input: nums = [3,9,6], k = 2
Output: 1
```
**Constraints:**
- <code>1 <= nums.length <= 10<sup>5</sup></code>
- <code>1 <= nums[i] <= 10<sup>5</sup></code>
- <code>1 <= k <= 10<sup>5</sup></code>
## Solution 1 - Sliding Window
#### C++
```cpp=
class Solution {
public:
int maxFrequency(vector<int>& nums, int k) {
sort(nums.begin(), nums.end());
long long oper = 0;
int ans = 1;
int l = 0;
for (int r = 1; r < nums.size(); r++) {
oper += (long long)(nums[r] - nums[r - 1]) * (r - l);
while (oper > k) {
oper -= nums[r] - nums[l];
l++;
}
ans = max(ans, r - l + 1);
}
return ans;
}
};
```
>### Complexity
>n = nums.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(nlogn) | O(logn) |
## Note
Sol1:
Space Complexity: logn => 排序所需的空間