# LC 2192. All Ancestors of a Node in a Directed Acyclic Graph
### [Problem link](https://leetcode.com/problems/all-ancestors-of-a-node-in-a-directed-acyclic-graph/)
###### tags: `leedcode` `medium` `c++` `DFS`
You are given a positive integer <code>n</code> representing the number of nodes of a **Directed Acyclic Graph** (DAG). The nodes are numbered from <code>0</code> to <code>n - 1</code> ( **inclusive** ).
You are also given a 2D integer array <code>edges</code>, where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> denotes that there is a **unidirectional** edge from <code>from<sub>i</sub></code> to <code>to<sub>i</sub></code> in the graph.
Return a list <code>answer</code>, where <code>answer[i]</code> is the **list of ancestors** of the <code>i<sup>th</sup></code> node, sorted in **ascending order** .
A node <code>u</code> is an **ancestor** of another node <code>v</code> if <code>u</code> can reach <code>v</code> via a set of edges.
**Example 1:**
<img alt="" src="https://assets.leetcode.com/uploads/2019/12/12/e1.png" style="width: 322px; height: 265px;" />
```
Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Nodes 0, 1, and 2 do not have any ancestors.
- Node 3 has two ancestors 0 and 1.
- Node 4 has two ancestors 0 and 2.
- Node 5 has three ancestors 0, 1, and 3.
- Node 6 has five ancestors 0, 1, 2, 3, and 4.
- Node 7 has four ancestors 0, 1, 2, and 3.
```
**Example 2:**
<img alt="" src="https://assets.leetcode.com/uploads/2019/12/12/e2.png" style="width: 343px; height: 299px;" />
```
Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Node 0 does not have any ancestor.
- Node 1 has one ancestor 0.
- Node 2 has two ancestors 0 and 1.
- Node 3 has three ancestors 0, 1, and 2.
- Node 4 has four ancestors 0, 1, 2, and 3.
```
**Constraints:**
- <code>1 <= n <= 1000</code>
- <code>0 <= edges.length <= min(2000, n * (n - 1) / 2)</code>
- <code>edges[i].length == 2</code>
- <code>0 <= from<sub>i</sub>, to<sub>i</sub> <= n - 1</code>
- <code>from<sub>i</sub> != to<sub>i</sub></code>
- There are no duplicate edges.
- The graph is **directed** and **acyclic** .
## Solution 1 - DFS
#### C++
```cpp=
class Solution {
public:
vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) {
vector<vector<int>> grid(n);
for (auto &edge: edges) {
grid[edge[0]].push_back(edge[1]);
}
vector<vector<int>> ans(n);
vector<int> seen(n, -1);
int start = 0;
function<void(int)> dfs = [&](int i) {
seen[i] = start;
for (int e: grid[i]) {
if (seen[e] != start) {
ans[e].push_back(start);
dfs(e);
}
}
};
for (start = 0; start < n; start++) {
dfs(start);
}
return ans;
}
};
```
#### C++
```cpp=
class Solution {
public:
vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) {
vector<vector<int>> graph(n);
for (vector<int>& edge: edges) {
graph[edge[1]].push_back(edge[0]); // child: parents
}
vector<vector<int>> ans(n);
for (int i = 0; i < n; i++) {
vector<int> seen(n, false);
queue<int> q;
q.push(i);
while (!q.empty()) {
int node = q.front();
q.pop();
for (int& parent: graph[node]) {
if (seen[parent] == false) {
seen[parent] = true;
q.push(parent);
}
}
}
for (int j = 0; j < seen.size(); j++) {
if (seen[j]) {
ans[i].push_back(j);
}
}
}
return ans;
}
};
```
>### Complexity
>m = edges.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(n(n + m)) | O(n + m) |
>| Solution 1 | O(n(n + m)) | O(n + m) |
## Note
x