# LC 2192. All Ancestors of a Node in a Directed Acyclic Graph ### [Problem link](https://leetcode.com/problems/all-ancestors-of-a-node-in-a-directed-acyclic-graph/) ###### tags: `leedcode` `medium` `c++` `DFS` You are given a positive integer <code>n</code> representing the number of nodes of a **Directed Acyclic Graph** (DAG). The nodes are numbered from <code>0</code> to <code>n - 1</code> ( **inclusive** ). You are also given a 2D integer array <code>edges</code>, where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>]</code> denotes that there is a **unidirectional** edge from <code>from<sub>i</sub></code> to <code>to<sub>i</sub></code> in the graph. Return a list <code>answer</code>, where <code>answer[i]</code> is the **list of ancestors** of the <code>i<sup>th</sup></code> node, sorted in **ascending order** . A node <code>u</code> is an **ancestor** of another node <code>v</code> if <code>u</code> can reach <code>v</code> via a set of edges. **Example 1:** <img alt="" src="https://assets.leetcode.com/uploads/2019/12/12/e1.png" style="width: 322px; height: 265px;" /> ``` Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]] Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Nodes 0, 1, and 2 do not have any ancestors. - Node 3 has two ancestors 0 and 1. - Node 4 has two ancestors 0 and 2. - Node 5 has three ancestors 0, 1, and 3. - Node 6 has five ancestors 0, 1, 2, 3, and 4. - Node 7 has four ancestors 0, 1, 2, and 3. ``` **Example 2:** <img alt="" src="https://assets.leetcode.com/uploads/2019/12/12/e2.png" style="width: 343px; height: 299px;" /> ``` Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]] Explanation: The above diagram represents the input graph. - Node 0 does not have any ancestor. - Node 1 has one ancestor 0. - Node 2 has two ancestors 0 and 1. - Node 3 has three ancestors 0, 1, and 2. - Node 4 has four ancestors 0, 1, 2, and 3. ``` **Constraints:** - <code>1 <= n <= 1000</code> - <code>0 <= edges.length <= min(2000, n * (n - 1) / 2)</code> - <code>edges[i].length == 2</code> - <code>0 <= from<sub>i</sub>, to<sub>i</sub> <= n - 1</code> - <code>from<sub>i</sub> != to<sub>i</sub></code> - There are no duplicate edges. - The graph is **directed** and **acyclic** . ## Solution 1 - DFS #### C++ ```cpp= class Solution { public: vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) { vector<vector<int>> grid(n); for (auto &edge: edges) { grid[edge[0]].push_back(edge[1]); } vector<vector<int>> ans(n); vector<int> seen(n, -1); int start = 0; function<void(int)> dfs = [&](int i) { seen[i] = start; for (int e: grid[i]) { if (seen[e] != start) { ans[e].push_back(start); dfs(e); } } }; for (start = 0; start < n; start++) { dfs(start); } return ans; } }; ``` #### C++ ```cpp= class Solution { public: vector<vector<int>> getAncestors(int n, vector<vector<int>>& edges) { vector<vector<int>> graph(n); for (vector<int>& edge: edges) { graph[edge[1]].push_back(edge[0]); // child: parents } vector<vector<int>> ans(n); for (int i = 0; i < n; i++) { vector<int> seen(n, false); queue<int> q; q.push(i); while (!q.empty()) { int node = q.front(); q.pop(); for (int& parent: graph[node]) { if (seen[parent] == false) { seen[parent] = true; q.push(parent); } } } for (int j = 0; j < seen.size(); j++) { if (seen[j]) { ans[i].push_back(j); } } } return ans; } }; ``` >### Complexity >m = edges.length >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n(n + m)) | O(n + m) | >| Solution 1 | O(n(n + m)) | O(n + m) | ## Note x