# LC 198. House Robber ### [Problem link](https://leetcode.com/problems/house-robber/) ###### tags: `leedcode` `python` `c++` `medium` `DP` You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and **it will automatically contact the police if two adjacent houses were broken into on the same night** . Given an integer array <code>nums</code> representing the amount of money of each house, return the maximum amount of money you can rob tonight **without alerting the police** . **Example 1:** ``` Input: nums = [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4. ``` **Example 2:** ``` Input: nums = [2,7,9,3,1] Output: 12 Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1). Total amount you can rob = 2 + 9 + 1 = 12. ``` **Constraints:** - <code>1 <= nums.length <= 100</code> - <code>0 <= nums[i] <= 400</code> ## Solution 1 - DP #### Python ```python= class Solution: def rob(self, nums: List[int]) -> int: if len(nums) <= 2: return max(nums) n = len(nums) dp = [0] * n dp[0] = nums[0] dp[1] = max(nums[0], nums[1]) for i in range(2, n): dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]) return dp[-1] ``` #### C++ ```cpp= class Solution { public: int rob(vector<int>& nums) { int n = nums.size(); vector<int> cache(n, -1); function<int(int)> dfs = [&](int i) { if (i < 0) { return 0; } if (cache[i] != -1) { return cache[i]; } cache[i] = max(dfs(i - 1), dfs(i - 2) + nums[i]); return cache[i]; }; return dfs(n - 1); } }; ``` ```cpp= class Solution { public: int rob(vector<int>& nums) { int n = nums.size(); vector<int> dp(n + 2, 0); for (int i = 0; i < n; i++) { dp[i + 2] = max(dp[i + 1], dp[i] + nums[i]); } return dp[n + 1]; } }; ``` ## Solution 2 - DP #### C++ ```cpp= class Solution { public: int rob(vector<int>& nums) { int n = nums.size(); int f0 = 0; int f1 = 0; for (int i = 0; i < n; i++) { int f2 = max(f0 + nums[i], f1); f0 = f1; f1 = f2; } return f1; } }; ``` >### Complexity >n = nums.length >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n) | O(n) | >| Solution 2 | O(n) | O(1) | ## Note x