# LC 198. House Robber
### [Problem link](https://leetcode.com/problems/house-robber/)
###### tags: `leedcode` `python` `c++` `medium` `DP`
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and **it will automatically contact the police if two adjacent houses were broken into on the same night** .
Given an integer array <code>nums</code> representing the amount of money of each house, return the maximum amount of money you can rob tonight **without alerting the police** .
**Example 1:**
```
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
```
**Example 2:**
```
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
```
**Constraints:**
- <code>1 <= nums.length <= 100</code>
- <code>0 <= nums[i] <= 400</code>
## Solution 1 - DP
#### Python
```python=
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) <= 2:
return max(nums)
n = len(nums)
dp = [0] * n
dp[0] = nums[0]
dp[1] = max(nums[0], nums[1])
for i in range(2, n):
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
return dp[-1]
```
#### C++
```cpp=
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
vector<int> cache(n, -1);
function<int(int)> dfs = [&](int i) {
if (i < 0) {
return 0;
}
if (cache[i] != -1) {
return cache[i];
}
cache[i] = max(dfs(i - 1), dfs(i - 2) + nums[i]);
return cache[i];
};
return dfs(n - 1);
}
};
```
```cpp=
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n + 2, 0);
for (int i = 0; i < n; i++) {
dp[i + 2] = max(dp[i + 1], dp[i] + nums[i]);
}
return dp[n + 1];
}
};
```
## Solution 2 - DP
#### C++
```cpp=
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
int f0 = 0;
int f1 = 0;
for (int i = 0; i < n; i++) {
int f2 = max(f0 + nums[i], f1);
f0 = f1;
f1 = f2;
}
return f1;
}
};
```
>### Complexity
>n = nums.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(n) | O(n) |
>| Solution 2 | O(n) | O(1) |
## Note
x