# LC 63. Unique Paths II
### [Problem link](https://leetcode.com/problems/unique-paths-ii/)
###### tags: `leedcode` `python` `c++` `medium` `DP`
You are given an <code>m x n</code> integer array <code>grid</code>. There is a robot initially located at the **top-left corner** (i.e., <code>grid[0][0]</code>). The robot tries to move to the **bottom-right corner** (i.e., <code>grid[m - 1][n - 1]</code>). The robot can only move either down or right at any point in time.
An obstacle and space are marked as <code>1</code> or <code>0</code> respectively in <code>grid</code>. A path that the robot takes cannot include **any** square that is an obstacle.
Return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The testcases are generated so that the answer will be less than or equal to <code>2 * 10<sup>9</sup></code>.
**Example 1:**
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/04/robot1.jpg" style="width: 242px; height: 242px;" />
```
Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
Output: 2
Explanation: There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
```
**Example 2:**
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/04/robot2.jpg" style="width: 162px; height: 162px;" />
```
Input: obstacleGrid = [[0,1],[0,0]]
Output: 1
```
**Constraints:**
- <code>m == obstacleGrid.length</code>
- <code>n == obstacleGrid[i].length</code>
- <code>1 <= m, n <= 100</code>
- <code>obstacleGrid[i][j]</code> is <code>0</code> or <code>1</code>.
## Solution 1 - DP
#### Python
```python=
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0 for _ in range(n)] for _ in range(m)]
if obstacleGrid[0][0] == 1:
return 0
for i in range(m):
if obstacleGrid[i][0] == 1:
break
dp[i][0] = 1
for i in range(n):
if obstacleGrid[0][i] == 1:
break
dp[0][i] = 1
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 0:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[-1][-1]
```
#### C++
```cpp=
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) {
if (obstacleGrid[i][0] == 1) {
break;
}
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
if (obstacleGrid[0][i] == 1) {
break;
}
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
continue;
}
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
```
## Solution 2 - DP
#### Python
```python=
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [0] * n
for i in range(n):
if obstacleGrid[0][i] == 1:
break
dp[i] = 1
for i in range(1, m):
for j in range(n):
if obstacleGrid[i][j] == 1:
dp[j] = 0
elif j > 0:
dp[j] += dp[j - 1]
return dp[-1]
```
#### C++
```cpp=
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<int> dp(n, 0);
for (int i = 0; i < n; i++) {
if (obstacleGrid[0][i] == 1) {
break;
}
dp[i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[j] = 0;
} else if (j != 0) {
dp[j] += dp[j - 1];
}
}
}
return dp[n - 1];
}
};
```
>### Complexity
>m = obstacleGrid.length
>n = obstacleGrid[i].length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(mn) | O(mn) |
>| Solution 2 | O(mn) | O(n) |
## Note
solutions 1: 2 dimensional dp
solutions 2: 1 dimensional dp