# LC 40. Combination Sum II
### [Problem link](https://leetcode.com/problems/combination-sum-ii/)
###### tags: `leedcode` `medium` `c++` `Backtracking`
Given a collection of candidate numbers (<code>candidates</code>) and a target number (<code>target</code>), find all unique combinations in <code>candidates</code>where the candidate numbers sum to <code>target</code>.
Each number in <code>candidates</code>may only be used **once** in the combination.
**Note:** The solution set must not contain duplicate combinations.
**Example 1:**
```
Input: candidates = [10,1,2,7,6,1,5], target = 8
Output:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
```
**Example 2:**
```
Input: candidates = [2,5,2,1,2], target = 5
Output:
[
[1,2,2],
[5]
]
```
**Constraints:**
- <code>1 <=candidates.length <= 100</code>
- <code>1 <=candidates[i] <= 50</code>
- <code>1 <= target <= 30</code>
## Solution 1
#### C++
```cpp=
class Solution {
public:
vector<vector<int>> res;
void backtracking(vector<int> &candidates, int target, vector<int> &path, int &pathSum, int startIdx) {
if (pathSum == target) {
res.push_back(path);
return;
}
for (int i = startIdx; i < candidates.size() && pathSum + candidates[i] <= target; i++) {
if (i > startIdx && candidates[i] == candidates[i - 1]) {
continue;
}
path.push_back(candidates[i]);
pathSum += candidates[i];
backtracking(candidates, target, path, pathSum, i + 1);
path.pop_back();
pathSum -= candidates[i];
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<int> path;
int pathSum = 0;
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, path, pathSum, 0);
return res;
}
};
```
精簡版, 將pathSum的概念用target實現
```cpp=
class Solution {
public:
vector<vector<int>> res;
void backtracking(vector<int> &candidates, int target, vector<int> &path, int startIdx) {
if (target == 0) {
res.push_back(path);
return;
}
for (int i = startIdx; i < candidates.size() && target - candidates[i] >= 0; i++) {
if (i > startIdx && candidates[i] == candidates[i - 1]) {
continue;
}
path.push_back(candidates[i]);
backtracking(candidates, target - candidates[i], path, i + 1);
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<int> path;
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, path, 0);
return res;
}
};
```
>### Complexity
>n = candidates.length
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O(n * 2^n) | O(n * 2^n) |
## Note
x