# LC 416. Partition Equal Subset Sum ### [Problem link](https://leetcode.com/problems/partition-equal-subset-sum/) ###### tags: `leedcode` `python` `c++` `medium` `DP` Given an integer array <code>nums</code>, return <code>true</code> if you can partition the array into two subsets such that the sum of the elements in both subsets is equal or <code>false</code> otherwise. **Example 1:** ``` Input: nums = [1,5,11,5] Output: true Explanation: The array can be partitioned as [1, 5, 5] and [11]. ``` **Example 2:** ``` Input: nums = [1,2,3,5] Output: false Explanation: The array cannot be partitioned into equal sum subsets. ``` **Constraints:** - <code>1 <= nums.length <= 200</code> - <code>1 <= nums[i] <= 100</code> ## Solution 1 - Backtracking(TLE) #### Python ```python= class Solution: def canPartition(self, nums: List[int]) -> bool: total = sum(nums) if total % 2: return False def backtrack(startIdx, tmp_sum): if startIdx == len(nums): return False if tmp_sum == total // 2: return True for i in range(startIdx, len(nums)): if tmp_sum > total // 2: return False tmp_sum += nums[i] if backtrack(i + 1, tmp_sum): return True tmp_sum -= nums[i] return backtrack(0, 0) ``` ## Solution 2 - DP(2D) #### Python ```python= class Solution: def canPartition(self, nums: List[int]) -> bool: target = sum(nums) if target % 2: return False target = target >> 1 row = len(nums) col = target + 1 dp = [[0 for _ in range(col)] for _ in range(row)] # initial dp for i in range(1, target): if nums[0] <= i: dp[0][i] = nums[0] for i in range(1, row): cur_weight = nums[i] cur_val = nums[i] for j in range(1, col): if cur_weight > j: dp[i][j] = dp[i - 1][j] else: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_val) return dp[-1][-1] == target ``` ## Solution 3 - DP(1D) #### Python ```python= class Solution: def canPartition(self, nums: List[int]) -> bool: target = sum(nums) if target % 2: return False target = target >> 1 dp = [0] * (target + 1) for i in range(len(nums)): for j in range(target, nums[i] - 1, -1): dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]) return dp[-1] == target ``` #### C++ ```cpp= class Solution { public: bool canPartition(vector<int>& nums) { int sum = accumulate(nums.begin(), nums.end(), 0); if (sum % 2) { return false; } int target = sum / 2; vector<int> dp(target + 1, 0); for (int i = 0; i < nums.size(); i++) { for (int j = target; j >= nums[i]; j--) { dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); if (dp[j] == target) { return true; } } } return false; } }; ``` >### Complexity >n = nums.length >m = int(sum(nums[i]) / 2) >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O($2^n$) | O(n) | >| Solution 2 | O(mn) | O(mn) | >| Solution 3 | O(mn) | O(m) | ## Note [ref](https://github.com/youngyangyang04/leetcode-master/blob/master/problems/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.md)