# LC 416. Partition Equal Subset Sum
### [Problem link](https://leetcode.com/problems/partition-equal-subset-sum/)
###### tags: `leedcode` `python` `c++` `medium` `DP`
Given an integer array <code>nums</code>, return <code>true</code> if you can partition the array into two subsets such that the sum of the elements in both subsets is equal or <code>false</code> otherwise.
**Example 1:**
```
Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
```
**Example 2:**
```
Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
```
**Constraints:**
- <code>1 <= nums.length <= 200</code>
- <code>1 <= nums[i] <= 100</code>
## Solution 1 - Backtracking(TLE)
#### Python
```python=
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total = sum(nums)
if total % 2:
return False
def backtrack(startIdx, tmp_sum):
if startIdx == len(nums):
return False
if tmp_sum == total // 2:
return True
for i in range(startIdx, len(nums)):
if tmp_sum > total // 2:
return False
tmp_sum += nums[i]
if backtrack(i + 1, tmp_sum):
return True
tmp_sum -= nums[i]
return backtrack(0, 0)
```
## Solution 2 - DP(2D)
#### Python
```python=
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
if target % 2:
return False
target = target >> 1
row = len(nums)
col = target + 1
dp = [[0 for _ in range(col)] for _ in range(row)]
# initial dp
for i in range(1, target):
if nums[0] <= i:
dp[0][i] = nums[0]
for i in range(1, row):
cur_weight = nums[i]
cur_val = nums[i]
for j in range(1, col):
if cur_weight > j:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight] + cur_val)
return dp[-1][-1] == target
```
## Solution 3 - DP(1D)
#### Python
```python=
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
if target % 2:
return False
target = target >> 1
dp = [0] * (target + 1)
for i in range(len(nums)):
for j in range(target, nums[i] - 1, -1):
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
return dp[-1] == target
```
#### C++
```cpp=
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2) {
return false;
}
int target = sum / 2;
vector<int> dp(target + 1, 0);
for (int i = 0; i < nums.size(); i++) {
for (int j = target; j >= nums[i]; j--) {
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
if (dp[j] == target) {
return true;
}
}
}
return false;
}
};
```
>### Complexity
>n = nums.length
>m = int(sum(nums[i]) / 2)
>| | Time Complexity | Space Complexity |
>| ----------- | --------------- | ---------------- |
>| Solution 1 | O($2^n$) | O(n) |
>| Solution 2 | O(mn) | O(mn) |
>| Solution 3 | O(mn) | O(m) |
## Note
[ref](https://github.com/youngyangyang04/leetcode-master/blob/master/problems/0416.%E5%88%86%E5%89%B2%E7%AD%89%E5%92%8C%E5%AD%90%E9%9B%86.md)