# LC 236. Lowest Common Ancestor of a Binary Tree ### [Problem link](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/) ###### tags: `leedcode` `medium` `c++` `LCA` Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According to the <a href="https://en.wikipedia.org/wiki/Lowest_common_ancestor" target="_blank">definition of LCA on Wikipedia</a>: &ldquo;The lowest common ancestor is defined between two nodes <code>p</code> and <code>q</code> as the lowest node in <code>T</code> that has both <code>p</code> and <code>q</code> as descendants (where we allow **a node to be a descendant of itself** ).&rdquo; **Example 1:** <img alt="" src="https://assets.leetcode.com/uploads/2018/12/14/binarytree.png" style="width: 200px; height: 190px;" /> ``` Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3. ``` **Example 2:** <img alt="" src="https://assets.leetcode.com/uploads/2018/12/14/binarytree.png" style="width: 200px; height: 190px;" /> ``` Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition. ``` **Example 3:** ``` Input: root = [1,2], p = 1, q = 2 Output: 1 ``` **Constraints:** - The number of nodes in the tree is in the range <code>[2, 10<sup>5</sup>]</code>. - <code>-10<sup>9</sup> <= Node.val <= 10<sup>9</sup></code> - All <code>Node.val</code> are **unique** . - <code>p != q</code> - <code>p</code> and <code>q</code> will exist in the tree. ## Solution 1 #### C++ ```cpp= /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if (root == nullptr || root == p || root == q) { return root; } TreeNode *left = lowestCommonAncestor(root->left, p, q); TreeNode *right = lowestCommonAncestor(root->right, p, q); if (left && right) { return root; } if (left == nullptr) { return right; } return left; } }; ``` >### Complexity >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n) | O(n) | ## Note sol1: [Ref](https://www.bilibili.com/video/BV1W44y1Z7AR/?spm_id_from=333.788&vd_source=088937f16fb413336c0cb260ed86a1c3) ![image](https://hackmd.io/_uploads/Hy4MUWN8A.png)