# LC 121. Best Time to Buy and Sell Stock ### [Problem link](https://leetcode.com/problems/best-time-to-buy-and-sell-stock/) ###### tags: `leedcode` `python` `c++` `easy` `Greedy` `DP` You are given an array <code>prices</code> where <code>prices[i]</code> is the price of a given stock on the <code>i<sup>th</sup></code> day. You want to maximize your profit by choosing a **single day** to buy one stock and choosing a **different day in the future** to sell that stock. Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return <code>0</code>. **Example 1:** ``` Input: prices = [7,1,5,3,6,4] Output: 5 Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell. ``` **Example 2:** ``` Input: prices = [7,6,4,3,1] Output: 0 Explanation: In this case, no transactions are done and the max profit = 0. ``` **Constraints:** - <code>1 <= prices.length <= 10<sup>5</sup></code> - <code>0 <= prices[i] <= 10<sup>4</sup></code> ## Solution 1 - Greedy #### Python ```python= class Solution: def maxProfit(self, prices: List[int]) -> int: low = float("inf") res = 0 for idx, price in enumerate(prices): low = min(low, price) res = max(res, price - low) return res ``` #### C++ ```cpp= class Solution { public: int maxProfit(vector<int>& prices) { int lowest = prices[0]; int res = 0; for (int i = 1; i < prices.size(); i++) { if (lowest < prices[i]) { res = max(res, prices[i] - lowest); } else { lowest = prices[i]; } } return res; } }; ``` ## Solution 2 - DP #### Python ```python= class Solution: def maxProfit(self, prices: List[int]) -> int: n = len(prices) dp = [[0, 0] for _ in range(n)] dp[0][0] = -prices[0] dp[0][1] = 0 for i in range(1, n): dp[i][0] = max(dp[i - 1][0], -prices[i]) dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]) return dp[-1][1] ``` >### Complexity >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n) | O(1) | ## Note sol2: dp[i][0]: 持有股票最大金額 dp[i][1]: 不持有股票最大金額 dp[i][0] = max(dp[i-1][0], -prices[i]) = max(dp[i-1][0], 買股票) dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0]) = max(dp[i-1][1], 賣股票)