# LC 232. Implement Queue using Stacks
### [Problem link](https://leetcode.com/problems/implement-queue-using-stacks/)
###### tags: `leedcode` `easy` `python` `c++`
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (<code>push</code>, <code>peek</code>, <code>pop</code>, and <code>empty</code>).
Implement the <code>MyQueue</code> class:
- <code>void push(int x)</code> Pushes element x to the back of the queue.
- <code>int pop()</code> Removes the element from the front of the queue and returns it.
- <code>int peek()</code> Returns the element at the front of the queue.
- <code>boolean empty()</code> Returns <code>true</code> if the queue is empty, <code>false</code> otherwise.
**Notes:**
- You must use **only** standard operations of a stack, which means only <code>push to top</code>, <code>peek/pop from top</code>, <code>size</code>, and <code>is empty</code> operations are valid.
- Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
**Example 1:**
```
Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]
Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
```
**Constraints:**
- <code>1 <= x <= 9</code>
- At most <code>100</code>calls will be made to <code>push</code>, <code>pop</code>, <code>peek</code>, and <code>empty</code>.
- All the calls to <code>pop</code> and <code>peek</code> are valid.
**Follow-up:** Can you implement the queue such that each operation is **<a href="https://en.wikipedia.org/wiki/Amortized_analysis" target="_blank">amortized</a>** <code>O(1)</code> time complexity? In other words, performing <code>n</code> operations will take overall <code>O(n)</code> time even if one of those operations may take longer.
## Solution 1
#### Python
```python=
class MyQueue:
def __init__(self):
self.pushStack = []
self.popStack = []
def push(self, x: int) -> None:
self.pushStack.append(x)
def pop(self) -> int:
self.peek()
return self.popStack.pop()
def peek(self) -> int:
if not self.popStack:
while self.pushStack:
self.popStack.append(self.pushStack.pop())
return self.popStack[-1]
def empty(self) -> bool:
return not self.pushStack and not self.popStack
```
#### C++
```cpp=
class MyQueue {
stack<int> st_in;
stack<int> st_out;
public:
MyQueue() {}
void push(int x) {
st_in.push(x);
}
int pop() {
if (st_out.empty()) {
while (!st_in.empty()) {
st_out.push(st_in.top());
st_in.pop();
}
}
int res = st_out.top();
st_out.pop();
return res;
}
int peek() {
int res = this->pop();
st_out.push(res);
return res;
}
bool empty() {
return (st_in.empty() && st_out.empty());
}
};
```
>### Complexity
>| | Time Complexity | Space Complexity |
>| ----------- | ---------------------------------- | ---- |
>| Solution 1 | push, empty: O(1), pop, peek: O(n) | O(n) |
## Note
x