# LC 1143. Longest Common Subsequence ### [Problem link](https://leetcode.com/problems/longest-common-subsequence/) ###### tags: `leedcode` `python` `c++` `medium` `DP` `LCS` Given two strings <code>text1</code> and <code>text2</code>, return the length of their longest **common subsequence** . If there is no **common subsequence** , return <code>0</code>. A **subsequence** of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters. - For example, <code>"ace"</code> is a subsequence of <code>"abcde"</code>. A **common subsequence** of two strings is a subsequence that is common to both strings. **Example 1:** ``` Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3. ``` **Example 2:** ``` Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3. ``` **Example 3:** ``` Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0. ``` **Constraints:** - <code>1 <= text1.length, text2.length <= 1000</code> - <code>text1</code> and <code>text2</code> consist of only lowercase English characters. ## Solution 1 - DP #### Python ```python= class Solution: def longestCommonSubsequence(self, text1: str, text2: str) -> int: m, n = len(text1), len(text2) res = 0 dp = [[0] * (n + 1) for _ in range(m + 1)] # dp[i][j] = 以nums1[i - 1]為結尾與以nums2[j - 1]為結尾的Longest Common Subsequence for i in range(1, m + 1): for j in range(1, n + 1): if text1[i - 1] == text2[j - 1]: dp[i][j] = dp[i - 1][j - 1] + 1 else: dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) return dp[-1][-1] ``` #### C++ ```cpp= class Solution { public: int longestCommonSubsequence(string text1, string text2) { vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0)); for (int i = 0; i < text1.size(); i++) { for (int j = 0; j < text2.size(); j++) { if (text1[i] == text2[j]) { dp[i + 1][j + 1] = dp[i][j] + 1; } else { dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]); } } } return dp.back().back(); } }; ``` >### Complexity >m = len(text1) >n = len(text2) >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(mn) | O(mn) | ## Note [代碼隨想錄](https://github.com/youngyangyang04/leetcode-master/blob/master/problems/1143.%E6%9C%80%E9%95%BF%E5%85%AC%E5%85%B1%E5%AD%90%E5%BA%8F%E5%88%97.md)