# LC 509. Fibonacci Number ### [Problem link](https://leetcode.com/problems/fibonacci-number/) ###### tags: `leedcode` `python` `c++` `easy` `DP` The **Fibonacci numbers** , commonly denoted <code>F(n)</code> form a sequence, called the **Fibonacci sequence** , such that each number is the sum of the two preceding ones, starting from <code>0</code> and <code>1</code>. That is, ``` F(0) = 0, F(1) = 1 F(n) = F(n - 1) + F(n - 2), for n > 1. ``` Given <code>n</code>, calculate <code>F(n)</code>. **Example 1:** ``` Input: n = 2 Output: 1 Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1. ``` **Example 2:** ``` Input: n = 3 Output: 2 Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2. ``` **Example 3:** ``` Input: n = 4 Output: 3 Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3. ``` **Constraints:** - <code>0 <= n <= 30</code> ## Solution 1 - DP #### Python ```python= class Solution: def fib(self, n: int) -> int: if n <= 1: return n dp = [0, 1] for i in range(2, n + 1): dp[0], dp[1] = dp[1], dp[0] + dp[1] return dp[1] ``` #### C++ ```cpp= class Solution { public: int fib(int n) { vector<int> dp = {0, 1}; if (n <= 1) { return dp[n]; } for (int i = 2; i <= n; i++) { int tmp = dp[0] + dp[1]; dp[0] = dp[1]; dp[1] = tmp; } return dp[1]; } }; ``` >### Complexity >| | Time Complexity | Space Complexity | >| ----------- | --------------- | ---------------- | >| Solution 1 | O(n) | O(1) | ## Note x