#### Original function
$Min\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{i,d,t} \times CK_{d,t}$
#### Taking into account multiple users
$Min\sum_{u=1}^{n}\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{u,i,d,t} \times CK_{d,t}$
* $u$ - user index
* $n$ - total number of users
#### Taking into system load
The assumption is that the energy distributor would not want extremely high number of appliances turned on at a certain time, while at other times the system is idle.
##### Total used appliances in a time-slot $t$ on a day $d$.
* $UA_{d,t} = \sum_{u=1}^{n}\sum_{i=1}^{m} A_{u,i,d,t}$
##### Mean appliances per day $d$
* $M_d = \frac{1}{24}\sum_{t=0}^{23} UA_{d,t}$
##### Load inbalance per day $d$
* $L_d = \sum_{t=0}^{23} |UA_{d,t}-M_d|$
##### Total load inbalance $d$
* $TL = \sum_{d=1}^{7} L_d$
Final function:
$Min[(\sum_{u=1}^{n}\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{u,i,d,t} \times CK_{d,t})+cTL]$, where $c$ is some normalization coefficient (maybe experimentally determined)
{"metaMigratedAt":"2023-06-15T09:31:20.698Z","metaMigratedFrom":"Content","title":"Untitled","breaks":true,"contributors":"[{\"id\":\"fa71bad7-68cb-43f1-813d-b44a993f4f24\",\"add\":1280,\"del\":256}]"}