#### Original function $Min\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{i,d,t} \times CK_{d,t}$ #### Taking into account multiple users $Min\sum_{u=1}^{n}\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{u,i,d,t} \times CK_{d,t}$ * $u$ - user index * $n$ - total number of users #### Taking into system load The assumption is that the energy distributor would not want extremely high number of appliances turned on at a certain time, while at other times the system is idle. ##### Total used appliances in a time-slot $t$ on a day $d$. * $UA_{d,t} = \sum_{u=1}^{n}\sum_{i=1}^{m} A_{u,i,d,t}$ ##### Mean appliances per day $d$ * $M_d = \frac{1}{24}\sum_{t=0}^{23} UA_{d,t}$ ##### Load inbalance per day $d$ * $L_d = \sum_{t=0}^{23} |UA_{d,t}-M_d|$ ##### Total load inbalance $d$ * $TL = \sum_{d=1}^{7} L_d$ Final function: $Min[(\sum_{u=1}^{n}\sum_{i=1}^{m} \sum_{d=1}^{7} \sum_{t=0}^{23} A_{u,i,d,t} \times CK_{d,t})+cTL]$, where $c$ is some normalization coefficient (maybe experimentally determined)
{"metaMigratedAt":"2023-06-15T09:31:20.698Z","metaMigratedFrom":"Content","title":"Untitled","breaks":true,"contributors":"[{\"id\":\"fa71bad7-68cb-43f1-813d-b44a993f4f24\",\"add\":1280,\"del\":256}]"}
Expand menu