# AutoKeras 建置環境 (CPU Version) :::info AutoKeras 1.0.0a 運行正常,無法給定自己的訓練集。 ::: 0. 指令: conda create --name myenv python=3.6 (建設新環境) 1. install keras by anaconda (include tensorflow) 2. 指令:conda install pytorch=0.4.1 cuda90 -c pytorch (Because autokeras 1.0.0a need ) 3. 指令:conda install git 4. 指令:pip install git+git://github.com/keras-team/autokeras@master#egg=autokeras (AutoKeras: https://autokeras.com/) 5. 指令:pip install --upgrade tensorflow (Because tensorflow have tf.keras, need to update tensorflow>1.1.0) (or pip install --upgrade --force-reinstall tensorflow) ```python= #Test if use gpu or not by TF2.0 import tensorflow as tf sess=tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) ``` 6. Your CPU supports instructions that this TensorFlow binary was not compiled to use.(CPU指令集不支持tensorflow指令的優化,使用cpu訓練效果不佳) (https://www.itread01.com/content/1515422292.html) ```python= #shield the warrning import os os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘ ``` 7. TF2.0與先前版本,指令名稱有差異,以下連結可查閱指令 https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0 8. AutoKeras Example - https://gist.github.com/OlegJakushkin/bf5e09da8813fec8bb3435b8fce140e0 - Test Example <ul> ```python= import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import autokeras as ak from keras.datasets import mnist # Prepare the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.reshape(x_test.shape + (1,)) # Search and train the classifier. clf = ak.ImageClassifier(max_trials=100) clf.fit(x_train, y_train,validation_split=0.2) y = clf.predict(x_test, y_test) ``` </ul> 9. 指令:conda install ipywidgets (for jupyter) AutoKeras 0.4.0 (CPU Version) ###### tags: `Built Environment`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up