# 2020-03-07 ## Theorem 2.21 > If $f(x)\in\mathbb{F}[x]$ and $c\in\mathbb{F}$, then $(x-c)$ is a factor of $f(x)$ if and only if $c$ is a root of $f(x)$. ### $\Rightarrow$ Assume $(c-x)$ is a factor of $f(x)$ then $f(x)=(x-c)q(x)$ then $f(c)=(c-c)q(c)=0$ thus c is a root. ### $\Leftarrow$ Assume $c$ is a root of $f(x)$, then apply division algorithm to find $$f(x)=(x-c)q(x)+r(x)$$ for some $q,r\in\mathbb{F}[X]$ , with $\deg(r)<\deg(x-c)$, so $r\in\mathbb{F}$, then consider $f(c)$ \begin{align} f(c)=&(c-c)q(c)+r&=0\\ &0+r&=0 \end{align} Thus $r=0$, and so $f(x)=(x-c)q(x)$ and we conclude that $(x-c)$ is a factor of $f(x)$.